RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Durability characteristics of recycled aggregate concrete

        Saravanakumar, Palaniraj,Dhinakaran, Govindasamy Techno-Press 2013 Structural Engineering and Mechanics, An Int'l Jou Vol.47 No.5

        People started to replace natural aggregate with recycled aggregate for a number of years due to disposal problem and certain other potential benefits. Though there are number of drawbacks with use of recycled aggregates like lesser modulus of elasticity, low compressive strength, increase in shrinkage, there are results of earlier studies that use of chemical and mineral admixtures improves the strength and durability of recycled concrete. The use of recycled aggregate from construction and demolition wastes is showing prospective application in construction as alternative to natural aggregates. It conserves lot of natural resources and reduces the space required for the landfill disposal. In the present research work, the effect of recycled aggregate on strength and durability aspects of concrete is studied. Grade of concrete chosen for the present work is M50 (with a characteristic compressive strength of 50 MPa). The recycled aggregates were collected from demolished structure with 20 years of age. Natural Aggregate (NA) was replaced with Recycled Aggregate (RA) in different percentages such as 25, 50 and 100 to understand its effect. The experiments were conducted for different ages of concrete such as 7, 14, 28, 56 days to assess the compressive and tensile strength. Durability characteristics of recycled aggregate concrete were studied with Rapid chloride penetration test (as per ASTMC1202), sorptivity test and acid test to assess resistance against chloride ion penetration, capillary suction and chemical attack respectively. Mix design for 50 MPa gives around 35 MPa after replacing natural aggregate with recycled aggregate in concrete mix and the chloride penetration range also lies in moderate limit. Hence it is understood from the results that replacement of NA with RA is very much possible and will be ecofriendly.

      • KCI등재

        Durability characteristics of recycled aggregate concrete

        Palaniraj Saravanakumar,Govindasamy Dhinakaran 국제구조공학회 2013 Structural Engineering and Mechanics, An Int'l Jou Vol.47 No.5

        People started to replace natural aggregate with recycled aggregate for a number of years due to disposal problem and certain other potential benefits. Though there are number of drawbacks with use of recycled aggregates like lesser modulus of elasticity, low compressive strength, increase in shrinkage, there are results of earlier studies that use of chemical and mineral admixtures improves the strength and durability of recycled concrete. The use of recycled aggregate from construction and demolition wastes is showing prospective application in construction as alternative to natural aggregates. It conserves lot of natural resources and reduces the space required for the landfill disposal. In the present research work, the effect of recycled aggregate on strength and durability aspects of concrete is studied. Grade of concrete chosen for the present work is M50 (with a characteristic compressive strength of 50 MPa). The recycled aggregates were collected from demolished structure with 20 years of age. Natural Aggregate (NA) was replaced with Recycled Aggregate (RA) in different percentages such as 25, 50 and 100 to understand its effect. The experiments were conducted for different ages of concrete such as 7, 14, 28, 56 days to assess the compressive and tensile strength. Durability characteristics of recycled aggregate concrete were studied with Rapid chloride penetration test (as per ASTMC1202), sorptivity test and acid test to assess resistance against chloride ion penetration, capillary suction and chemical attack respectively. Mix design for 50 MPa gives around 35 MPa after replacing natural aggregate with recycled aggregate in concrete mix and the chloride penetration range also lies in moderate limit. Hence it is understood from the results that replacement of NA with RA is very much possible and will be ecofriendly.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼