RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        High Power Single Mode Multi-Oxide Layer VCSEL with Optimized Thicknesses and Aperture Sizes of Oxide Layers

        Mohammad Yazdanypoor,Farzin Emami 한국광학회 2014 Current Optics and Photonics Vol.18 No.2

        A novel multi-oxide layer structure for vertical cavity surface emitting laser (VCSEL) structures is proposed to achieve higher single mode output power. The structure has four oxide layers with different aperture sizes and thicknesses. The oxide layer thicknesses are optimized simultaneously to reach the highest single mode output power. A heuristic method is proposed for plotting the influence of these variable changes on the operation of optical output power. A comprehensive optical-electrical thermal-gain self-consistent VCSEL model is used to simulate the continuous-wave operation of the multi-layer oxide VCSELs. A comparison between optimized VCSELs with different structures is presented. The results show that by using multi-oxide layers with different thicknesses, higher single-mode optical output power could be achieved in comparison with multi-oxide layer structures with the same thicknesses.

      • KCI등재

        Simulation and Optimization of Nonperiodic Plasmonic Nano-Particles

        Majid Akhlaghi,Farzin Emami,Mokhtar Sha Sadeghi,Mohammad Yazdanypoor 한국광학회 2014 Current Optics and Photonics Vol.18 No.1

        A binary-coupled dipole approximation (BCDA) is described for designing metal nanoparticles with nonperiodic structures in one, two, and three dimensions. This method can be used to simulate the variation of near- and far-field properties through the interactions of metal nanoparticles. An advantage of this method is in its combination with the binary particle swarm optimization (BPSO) algorithm to find the best array of nanoparticles from all possible arrays. The BPSO algorithm has been used to design an array of plasmonic nanospheres to achieve maximum absorption, scattering, and extinction coefficient spectra. In BPSO, a swarm consists of a matrix with binary entries controlling the presence (‘1’) or the absence (‘0’) of nanospheres in the array. This approach is useful in optical applications such as solar cells, biosensors, and plasmonic nanoantennae, and optical cloaking.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼