RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Real-time Response System for the Simulation of Accidental Fires, Explosions and Toxic Releases of Hazardous Pollutants in Chemical Industries

        Mohamed F. Yassin,Alyaa AlShatti, M.Sc 한국대기환경학회 2021 한국대기환경학회 학술대회논문집 Vol.2021 No.10

        With the rapid industrial development and the complexity of technological systems, the accidental release of hazardous chemicals has become alarming. Accident fires, explosions, and toxic material releases due to industrial chemical processes cause severe damage to human health and environmental quality. Therefore, establishing a real-time system to simulate and identify fires, explosions, and toxic material dispersion is essential to predict and deal with such accidents and take all possible steps to minimize losses in human lives and properties. This paper concerns with simulating the accidental fires, explosions, and toxic releases of hazardous Materials in chemical industries. The simulation was modeled using the latest models of toxic releases, fires, and explosions approved by the US Environmental Protection Agency (US-EPA). The dispersion models included DEGADIS, SLAB, AFTOX, and INPUFF models. The fire models had the Gas Research Institute (GRI) unconfined liquid pool, confined liquid pool, jet fire models, and Boiling Liquid Expanding Vapor Explosion (BLEVE) thermal radiation model. While, the explosion models included trinitrotoluene (TNT) Equivalency, The Netherlands Organization (TNO) Multi-Energy, and Baker-Strehlow-Tang (B-S-T) models. The simulation system had a database containing all materials’ physical and chemical properties and information about each material"s type and hazard level. The simulation system was connected online to a meteorological monitoring station and a geographical user interface. Simulations using this system help evaluate the risks and safety issues associated with industrial accidents better.

      • KCI등재

        Nanoparticles of ZnO/Berberine complex contract COVID-19 and respiratory co-bacterial infection in addition to elimination of hydroxychloroquine toxicity

        Ghareeb Doaa A.,Saleh Samar R.,Seadawy Mohamed G.,Nofal Mohammed S.,Abdulmalek Shaymaa A.,Hassan Salma. F.,Khedr Shaimaa M.,AbdElwahab Miral G.,Sobhy Ahmed A.,Abdel-Hamid Ali saber Ali,Yassin Abdelrah 한국약제학회 2021 Journal of Pharmaceutical Investigation Vol.51 No.6

        Purpose A novel coronavirus (COVID-19) that has not been previously identified in humans and has no specific treatment has recently spread. Treatment trials using antiviral and immune-modulating drugs such as hydroxychloroquine (HCQ) were used to control this viral outbreak however several side effects have emerged. Berberine (BER) is an alkaloid that has been reported to reveal some pharmacological properties including antioxidant and antimicrobial activities. Additionally, Zinc oxide nanoparticles (ZnO-NPs) possess potent antioxidant and anti-inflammatory properties. Therefore, this study was undertaken to estimate the efficiency of both BER and synthetic ZnO/BER complex as an anti-COVID-19 therapy. Methods First, the ZnO/BER complex was prepared by the facile mixing method. Then in vitro studies on the two compounds were conducted including VeroE6 toxicity, anti-COVID-19 activity, determination of inhibitory activity towards papain-like proteinase (PL pro) and spike protein- and receptor- binding domain (RBD) as well as assessment of drug toxicity on RBCs. Results The results showed that ZnO/BER complex acts as an anti-COVID-19 by inhibiting spike protein binding with angiotensin-converting enzyme II (ACE II), PL pro activity, spike protein and E protein levels, and expression of both E-gene and RNA dependent RNA polymerase (RdRp) at a concentration lower than that of BER or ZnO-NPs alone. Furthermore, ZnO/BER complex had antioxidant and antimicrobial properties where it prevents the auto oxidation of 2,2-Diphenyl- 1-picrylhydrazyl (DPPH) and the culture of lower respiratory system bacteria that affected Covid 19 patients. The ZnO/BER complex prevented as well the HCQ cytotoxic effect on both RBC and WBC (in vitro) and hepatotoxicity, nephrotoxicity and anemia that occurred after HCQ long administration in vivo. Conclusion The ZnO/BER complex can be accounted as promising anti-COVID 19 candidate because it inhibited the virus entry, replication, and assembly. Furthermore, it could be used to treat a second bacterial infection that took place in hospitalized COVID 19 patients. Moreover, ZnO/BER complex was found to eliminate the toxicity of long-term administration of HCQ in vivo.

      • KCI등재

        First Measurements of Carbonaceous Aerosol across Urban, Rural and Residential Areas in Jeddah City, Saudi Arabia

        Iqbal M. Ismail,Ahmad S. Summan,Jalal M. Basahi,Essam Hammam,Mohamed F. Yassin,Ibrahim A. Hassan 한국대기환경학회 2021 Asian Journal of Atmospheric Environment (AJAE) Vol.15 No.2

        Concentrations of black carbon (BC), organic carbon (OC), and total suspended particulate matter (TSP) were simultaneously assessed in urban, rural and residential areas in Jeddah city for one year from January to December 2017. It was aimed in the present study to provide information about the spatial and seasonal variability of these aerosol species in Jeddah, and insight into sources, processes and effects of meteorological conditions. To the best of our knowledge, this is the first study investigating the variability of carbonaceous aerosols (OC and BC) in Saudi Arabia. The average concentrations of OC, BC, and TSP varied spatially and temporally. The annual average concentrations of OC, BC, and TSP were 134.05, 7.16, and 569.41 μg m-3 and 34.32, 5.14, and 240.64 μg m-3 and 10.67, 4.39 and 101.31 μg m-3 in the urban, residential and rural areas, respectively. Moreover, there was a clear seasonal variation in the concentration of carbonaceous aerosols; the highest concentrations were recorded in February and September, while the lowest concentrations of OC were recorded during April, May and August in the urban, residential and rural sites, respectively. Nevertheless, the lowest concentrations of BC were recorded during March in the urban and residential sites and during November in the rural site. The relative concentrations of OC and BC to the TSP were relatively high, and they have a significant correlation with prevalent wind speed (-0.636, and -0.581 in the urban area), (-0.539 and -0.511 in the residential area), and (-0.508 and -0.501 in the rural area), respectively. The marked differences in the concentrations of BC and OC were reflected on OC/BC ratio, which is a good representative of different source types. This preliminary study showed that the potential local sources were emissions from traffic (fossil fuel), biomass burning, anthropogenic activities (e.g. car drifting and outdoor cooking), and industrial activities. The present study suggest the presence of highly inefficient combustion sources and highlight the need for the regulation of such emissions.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼