RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Symbolic Cluster Analysis for Distribution Valued Dissimilarity

        Matsui, Yusuke,Minami, Hiroyuki,Misuta, Masahiro The Korean Statistical Society 2014 Communications for statistical applications and me Vol.21 No.3

        We propose a novel hierarchical clustering for distribution valued dissimilarities. Analysis of large and complex data has attracted significant interest. Symbolic Data Analysis (SDA) was proposed by Diday in 1980's, which provides a new framework for statistical analysis. In SDA, we analyze an object with internal variation, including an interval, a histogram and a distribution, called a symbolic object. In the study, we focus on a cluster analysis for distribution valued dissimilarities, one of the symbolic objects. A hierarchical clustering has two steps in general: find out step and update step. In the find out step, we find the nearest pair of clusters. We extend it for distribution valued dissimilarities, introducing a measure on their order relations. In the update step, dissimilarities between clusters are redefined by mixture of distributions with a mixing ratio. We show an actual example of the proposed method and a simulation study.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼