RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effect of the Fiber Orientation and the Radial Depth of Cut on the Flank Wear in End Milling of CFRP

        Minsu Kim,Minkeon Lee,Gihun Cho,Sun-Kyu Lee 한국정밀공학회 2020 International Journal of Precision Engineering and Vol.21 No.7

        In this study tool wear during CFRP milling is experimentally investigated to explore the optimization of various cutting condition. From the test machining, it was found that CFRP milling was conducted mostly through the brittle mode machining that creates chip with powder shape. Tool wear is originated from the flank wear generated by the friction force between flank face and machined surface as well as the cutting edge wear by an impact force of fiber cutting. The flank wear is focused on a fiber orientation as well as a friction distance of the flank face in this paper. Based on the results, the tool wear progression model is suggested considering the fiber orientation and the radial depth of cut. From the results, it was found that the fiber orientation greatly affects the flank wear which arises most severely at the parallel to the tool feed direction that induces larger friction force. Also, the radial depth of cut smaller than 10% of diametric engagement accelerates the flank wear due to the increase of friction distance. Using this correlation among parameters, wear prediction model with force equations was derived and estimation results sufficiently match with the wear measurement values.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼