RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Ammonia recovery from human urine as liquid fertilizers in hollow fiber membrane contactor: Effects of permeate chemistry

        Mekdimu Mezemir Damtie,Federico Volpin,Minwei Yao,Leonard Demegilio Tijing,Ruth Habte Hailemariam,Teng Bao,Kwang-Duck Park,Ho Kyong Shon,June-Seok Choi 대한환경공학회 2021 Environmental Engineering Research Vol.26 No.1

        The production of the existing nitrogen fertilizer is costly and less environmental-friendly. Various green technologies are currently emerging toward providing alternative options. In this study, a liquid/liquid hydrophobic hollow-fiber membrane contactor was employed at ambient temperature and natural urine pH ~ 9.7 to recover ammonium fertilizers from human urine. Results showed that permeate side chemistry was one of the major factors affecting the ammonia mass transfer. The study on the ammonia capturing performance of diluted sulfuric acid, phosphoric acid, nitric acid, and DI water confirmed that acid type, acid concentration, and permeate side operating pH were the most important parameters affecting the ammonia capturing tendency. Sulfuric acid was slightly better in capturing more ammonia than other acid types. The study also identified increasing acid concentration didn’t necessarily increase ammonia mining tendency because there was always one optimum concentration value at which maximum ammonia extraction was possible. The best permeate side operating pH to extract ammonia for fertilizer purposes was selected based on the dissociation equilibrium of different types of acids. Accordingly, the analysis showed that the membrane process has to be operated at pH > 3 for sulfuric acid, between 3.5 to 11.5 for phosphoric acid, and above 0.5 for nitric acid so as to produce their respective high-quality liquid ammonium sulfate, ammonium monophosphate/diphosphate, and ammonium nitrate fertilizer. Therefore, permeate side acid concentration, pH, and acid type has to always be critically optimized before starting the ammonia mining experiment.

      • Reverse osmosis membrane fabrication and modification technologies and future trends: A review

        Hailemariam, Ruth Habte,Woo, Yun Chul,Damtie, Mekdimu Mezemir,Kim, Bong Chul,Park, Kwang-Duck,Choi, June-Seok Elsevier 2020 Advances in colloid and interface science Vol.276 No.-

        <P><B>Abstract</B></P> <P>Reverse osmosis (RO) is the most widely used technology in water treatment and desalination technologies for potable water production. Since its invention, RO has undergone significant developments in terms of material science, process, system optimization, methods of membrane synthesis, and modifications. Among various materials used for the synthesis of an RO membrane, the polyamide thin-film composite (PA-TFC) is by far the most common, owing to its excellent water permeability high salt rejection, and stability. However, a tradeoff between membrane permeability and salt rejection and membrane fouling has been a major hindrance for the effective application of this membrane. Thus, a broad investigation has been carried out to address these problems, and among which <I>co</I>-solvent interfacial polymerization (CAIP) and the surface modification of substrates and active layers of RO membrane have been the most effective approaches for controlling and improving the surface properties of the PA-TFC membrane. In this review paper, the problems associated with the RO membrane processes and strategies has been discussed and addressed in detail. Furthermore, as the focus of this review, the major advancements in the strategies used for enhancement of RO membrane performance through CAIP, and surface modifications were scrutinized and summarized.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Literature review of membrane materials and problems associated with RO process </LI> <LI> Effects of the co-solvent assisted interfacial polymerization (CAIP) </LI> <LI> Explanations of the strategies to improve PA-TFC RO membrane performances </LI> <LI> Investigations of recent substrates and active layer modifications approaches </LI> <LI> Modification methodologies of recent physical and chemical surface modifications </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼