RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Automation of Workplace Lifting Hazard Assessment for Musculoskeletal Injury Prevention

        June T Spector,Max Lieblich,Stephen Bao,Kevin McQuade,Margaret Hughes 대한직업환경의학회 2014 대한직업환경의학회지 Vol.26 No.-

        Objectives: Existing methods for practically evaluating musculoskeletal exposures such as posture and repetition in workplace settings have limitations. We aimed to automate the estimation of parameters in the revised United States National Institute for Occupational Safety and Health (NIOSH) lifting equation, a standard manual observational tool used to evaluate back injury risk related to lifting in workplace settings, using depth camera (Microsoft Kinect) and skeleton algorithm technology. Methods: A large dataset (approximately 22,000 frames, derived from six subjects) of simultaneous lifting and other motions recorded in a laboratory setting using the Kinect (Microsoft Corporation, Redmond, Washington, United States) and a standard optical motion capture system (Qualysis, Qualysis Motion Capture Systems, Qualysis AB, Sweden) was assembled. Error-correction regression models were developed to improve the accuracy of NIOSH lifting equation parameters estimated from the Kinect skeleton. Kinect-Qualysis errors were modelled using gradient boosted regression trees with a Huber loss function. Models were trained on data from all but one subject and tested on the excluded subject. Finally, models were tested on three lifting trials performed by subjects not involved in the generation of the model-building dataset. Results: Error-correction appears to produce estimates for NIOSH lifting equation parameters that are more accurate than those derived from the Microsoft Kinect algorithm alone. Our error-correction models substantially decreased the variance of parameter errors. In general, the Kinect underestimated parameters, and modelling reduced this bias, particularly for more biased estimates. Use of the raw Kinect skeleton model tended to result in falsely high safe recommended weight limits of loads, whereas error-corrected models gave more conservative, protective estimates. Conclusions: Our results suggest that it may be possible to produce reasonable estimates of posture and temporal elements of tasks such as task frequency in an automated fashion, although these findings should be confirmed in a larger study. Further work is needed to incorporate force assessments and address workplace feasibility challenges. We anticipate that this approach could ultimately be used to perform large-scale musculoskeletal exposure assessment not only for research but also to provide real-time feedback to workers and employers during work method improvement activities and employee training.

      • KCI등재

        Concrete Filled Steel Tubes for Bridge Pier and Foundation Construction

        Charles W. Roeder,Max T. Stephens,Dawn E. Lehman 한국강구조학회 2018 International Journal of Steel Structures Vol.18 No.1

        Concrete filled steel tubes (CFSTs) are composite members that are commonly used in many countries today. CFST components are used in the United States, but they are more common in Asia, in part because the connections used in Asia are quite labor intensive and there are not standard connections in the U.S. In addition, US design specifications are prepared by separate groups for structural steel and reinforced concrete structures and so composite systems that use CFST components are not overseen by a single group and as such there are several conflicting design standards. In the US, steel tubes used for CFST are more slender (i.e., the diameter-to-thickness, D/t, ratio is larger) than some other countries, and labor practices (structural steel labor is different than reinforcing steel labor) also cause potential conflicts in construction. As a result, CFST has had some use in tall building construction in the US, but very limited use in bridge construction. A research program at the University of Washington has been in progress to address many of these issues with an eye towards universal design expressions, simpler, standardized connections and promotion of accelerated bridge construction (ABC). The research has resulted in recent changes to the American Association of State Highway Officials (AASHTO) bridge design specification as well as state departments of transportation (DOTs), which supports the increased use of CFST in bridge piers and pile and drilled-shaft foundations. An experimental research study which included 19 CFST pier-to-footing (or pile-cap) connection tests and 8 CFST pier column-to-precast pier cap tests was performed. These connections provide good performance under both seismic and gravity loads and address the concerns of US construction. These connections, their design rules and requirements, and their impact on composite behavior and system performance are discussed. These results permit rapid and economical construction of CFST bridge piers, piles and drilled shaft foundations. They encourage the use of more slender and economical tubes, while achieving the benefits of composite construction.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼