RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        In vivo genome editing targeted towards the female reproductivesystem

        Masahiro Sato,Masato Ohtsuka,Shingo Nakamura,Takayuki Sakurai,Satoshi Watanabe,Channabasavaiah B. Gurumurthy 대한약학회 2018 Archives of Pharmacal Research Vol.41 No.9

        The discovery of sequence specific nucleases such as ZFNs, TALENs, and CRISPR/Cas9 has revolutionized genome editing. The CRISPR/Cas9 system has particularly emerged as a highly simple and efficient approach towards generating genome-edited animal models of most of the experimental species. The limitation of these novel genome editing tools is that, till date, they depend on traditional pronuclear injection (PI)-based transgenic technologies developed over the last three decades. PI requires expensive micromanipulator systems and the equipment operators must possess a high level of skill. Therefore, since the establishment of PI-based transgenesis, various research groups worldwide have attempted to develop alternative and simple gene delivery methods. However, owing to the failure of chromosomal integration of the transgene, none of these methods gained the level of confidence as that by the PI method in order to be adapted as a routine approach. The recently developed genome editing systems do not require complicated techniques. Therefore, presently, attention is being focused on non-PIbased gene delivery into germ cells for simple and rapid production of genetically engineered animals. For example, a few reports during the previous 1–2 years demonstrated the use of electroporation (EP) in isolated zygotes that helped to overcome the absolute dependency on PI techniques. Recently, another breakthrough technology called genome editing via oviductal nucleic acids delivery (GONAD) that directly delivers nucleic acids into zygotes within the oviducts in situ was developed. This technology completely relieves the bottlenecks of animal transgenesis as it does not require PI and ex vivo handling of embryos. This review discusses in detail the in vivo gene delivery methods targeted towards female reproductive tissues as these methods that have been developed over the past 2–3 decades can now be re-evaluated for their suitability to deliver the CRISPR/Cas9 components to produce transgenic animals. This review also provides an overview of the latest advances in CRISPR-enabled delivery technologies that have caused paradigm shifts in animal transgenesis methodologies.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼