RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam's shear strength

        M. Safa,M. Shariati,Z. Ibrahim,A. Toghroli,Shahrizan Bin Baharom,Norazman M. Nor,Dalibor Petković 국제구조공학회 2016 Steel and Composite Structures, An International J Vol.21 No.3

        Structural design of a composite beam is influenced by two main factors, strength and ductility. For the design to be effective for a composite beam, say an RC slab and a steel I beam, the shear strength of the composite beam and ductility have to carefully estimate with the help of displacements between the two members. In this investigation the shear strengths of steel-concrete composite beams was analyzed based on the respective variable parameters. The methodology used by ANFIS (Adaptive Neuro Fuzzy Inference System) has been adopted for this purpose. The detection of the predominant factors affecting the shear strength steel-concrete composite beam was achieved by use of ANFIS process for variable selection. The results show that concrete compression strength has the highest influence on the shear strength capacity of composite beam.

      • KCI등재

        Microalgal Biotechnology: Carotenoid and Glycerol Production by the Green Algae Dunaliella Isolated from the Gave-Khooni Salt Marsh, Iran

        M. R. Hadi,M. Shariati,S. Afsharzadeh 한국생물공학회 2008 Biotechnology and Bioprocess Engineering Vol.13 No.5

        In this study, carotenoid and glycerol production in two unicellular green algae (Dunaliella salina and D. viridis) isolated from the Gave-Khooni salt marsh grown in media containing five different salt concentrations (0.17, 1, 2, 3, and 4 M NaCl) were evaluated under sterile conditions. Algae growth decreased as the medium salinity increased. Optimum growth of D. salina and D. viridis were obtained at 2 and 1 M NaCl, respectively. As salinity increased, glycerol and carotenoid production were increased in D. salina, whereas lower values for these products were produced in D. viridis under the same conditions. Fur-thermore, the cell color of D. salina changed from green to orange-red following accumulation of carotenoid, but the color of D. viridis was not changed. Thereby, it seems that the Iranian D. salina may be suitable for carotenoid production (beta-carotene) on a large scale. In addition, since carotenoid compounds enhance the efficiency of photosynthesis and glycerol synthesis, it appears that the pathway for glycerol production and mechanisms of salt tolerance in D. viridis are unique from those of D. salina.

      • KCI등재

        Experimental and numerical investigations on the ratcheting characteristics of cylindrical shell under cyclic axial loading

        M. Shariati,H. Hatami,H. Torabi,H.R. Epakchi 국제구조공학회 2012 Structural Engineering and Mechanics, An Int'l Jou Vol.44 No.6

        The ratcheting characteristics of cylindrical shell under cyclic axial loading are investigated. The specimens are subjected to stress-controlled cycling with non-zero mean stress, which causes the accumulation of plastic strain or ratcheting behavior in continuous cycles. Also, cylindrical shell shows softening behavior under symmetric axial strain-controlled loading and due to the localized buckling, which occurs in the compressive stress-strain curve of the shell; it has more residual plastic strain in comparison to the tensile stress-strain hysteresis curve. The numerical analysis was carried out by ABAQUS software using hardening models. The nonlinear isotropic/kinematic hardening model accurately simulates the ratcheting behavior of shell. Although hardening models are incapable of simulating the softening behavior of the shell, this model analyzes the softening behavior well. Moreover, the model calculates the residual plastic strain close to the experimental data. Experimental tests were performed using an INSTRON 8802 servo-hydraulic machine. Simulations show good agreement between numerical and experimental results. The results reveal that the rate of plastic strain accumulation increases for the first few cycles and then reduces in the subsequent cycles. This reduction is more rapid for numerical results in comparison to experiments.

      • SCIESCOPUS

        Experimental and numerical investigations on the ratcheting characteristics of cylindrical shell under cyclic axial loading

        Shariati, M.,Hatami, H.,Torabi, H.,Epakchi, H.R. Techno-Press 2012 Structural Engineering and Mechanics, An Int'l Jou Vol.44 No.6

        The ratcheting characteristics of cylindrical shell under cyclic axial loading are investigated. The specimens are subjected to stress-controlled cycling with non-zero mean stress, which causes the accumulation of plastic strain or ratcheting behavior in continuous cycles. Also, cylindrical shell shows softening behavior under symmetric axial strain-controlled loading and due to the localized buckling, which occurs in the compressive stress-strain curve of the shell; it has more residual plastic strain in comparison to the tensile stress-strain hysteresis curve. The numerical analysis was carried out by ABAQUS software using hardening models. The nonlinear isotropic/kinematic hardening model accurately simulates the ratcheting behavior of shell. Although hardening models are incapable of simulating the softening behavior of the shell, this model analyzes the softening behavior well. Moreover, the model calculates the residual plastic strain close to the experimental data. Experimental tests were performed using an INSTRON 8802 servo-hydraulic machine. Simulations show good agreement between numerical and experimental results. The results reveal that the rate of plastic strain accumulation increases for the first few cycles and then reduces in the subsequent cycles. This reduction is more rapid for numerical results in comparison to experiments.

      • KCI등재

        Strengthening of bolted shear joints in industrialized ferrocement construction

        M. Ismail,M. Shariati,A.S.M. Abdul Awal,C.E. Chiong,E. Sadeghipour Chahnasir,A. Porbar,A. Heydari,M. Khorami 국제구조공학회 2018 Steel and Composite Structures, An International J Vol.28 No.6

        This paper highlights results of some experimental work that deals with strengthening of bolted shear joints in thin-walled ferrocement structure where steel wires, bent into U-shape are considered as simple inserts around the bolt hole. The parameters investigated include the number of layers of wire mesh, edge distance of bolt hole, size and location of the inserts. Test results have shown that for small edge distance, failure occurred either in cleavage or shearing mode, and the strength of the joint increased with an increase in the edge distance. This continued up to an upper limit set by either tension or bearing failure. The experimental study further revealed that for a given edge distance the strength of a joint can significantly be enhanced by using U-inserts. The equations developed for predicting joint strength in ferrocement composites can also be modified to include the effects of the inserts with a good level of accuracy.

      • KCI등재

        Distribution of shear force in perforated shear connectors

        Xing Wei,M. Shariati,Y. Zandi,Shiling Pei,Zhibin Jin,S. Gharachurlu,M.M. Abdullahi,M.M. Tahir,M. Khorami 국제구조공학회 2018 Steel and Composite Structures, An International J Vol.27 No.3

        A perforated shear connector group is commonly used to transfer shear in steel–concrete composite structures when the traditional shear stud connection is not strong enough. The multi-hole perforated shear connector demonstrates a more complicated behavior than the single connector. The internal force distribution in a specific multi-hole perforated shear connector group has not been thoroughly studied. This study focuses on the load-carrying capacity and shear force distribution of multi-hole perforated shear connectors in steel.concrete composite structures. ANSYS is used to develop a three-dimensional finite element model to simulate the behavior of multi-hole perforated connectors. Material and geometric nonlinearities are considered in the model to identify the failure modes, ultimate strength, and load–slip behavior of the connection. A three-layer model is introduced and a closed-form solution for the shear force distribution is developed to facilitate design calculations. The shear force distribution curve of the multi-hole shear connector is catenary, and the efficiency coefficient must be considered in different limit states.

      • KCI등재

        Numerical analysis of channel connectors under fire and a comparison of performance with different types of shear connectors subjected to fire

        S.E.M. Shahabi,N.H. Ramli Sulong,M. Shariati,M. Mohammadhassani,S.N.R. Shah 국제구조공학회 2016 Steel and Composite Structures, An International J Vol.20 No.3

        The behavior of shear connectors plays a significant role in maintaining the required strength of a composite beam in normal and hazardous conditions. Various types of shear connectors are available and being utilized in the construction industry according to their use. Channel connectors are a suitable replacement for conventional shear connectors. These connectors have been tested under different types of loading at ambient temperature; however, the behavior of these connectors at elevated temperatures has not been studied. This investigation proposes a numerical analysis approach to estimate the behavior of channel connectors under fire andcompare it with the numerical analysis performed in headed stud and Perfobond shear connectors subjected to fire. This paper first reviews the mechanism of various types of shear connectors and then proposes a non-linear thermomechanical finite element (FE) model of channel shear connectors embedded in high-strength concrete (HSC) subjected to fire. Initially, an accurate nonlinear FE model of the specimens tested at ambient temperature was developed to investigate the strength of the channel-type connectors embedded in an HSC slab. The outcomes were verified with the experimental study performed on the testing of channel connectors at ambient temperature by Shariati <i>et al</i>. (2012). The FE model at ambient temperature was extended to identify the behavior of channel connectors subjected to fire. A comparative study is performed to evaluate the performance of channel connectors against headed stud and Perfobond shear connectors. The channel connectors were found to be a more economical and easy-to-apply alternative to conventional shear connectors.

      • KCI등재

        Performance of shear connectors at elevated temperatures − A review

        S.E.M. Shahabi,N.H. Ramli Sulong,M. Shariati,S.N.R. Shah 국제구조공학회 2016 Steel and Composite Structures, An International J Vol.20 No.1

        Shear connectors are key components to ensure the efficient composite action and satisfactory transfer of shear forces at the steel–concrete interface in composite beams. Under hazardous circumstances, such as fire in a building, the performance of a composite beam significantly relies on the performance of shear connectors. Studies on the behavior of shear connectors subjected to elevated temperatures performed in the last decade are reviewed in this paper. The experimental testing of push-out specimens, the design approaches provided by researchers and different codes, the major failure modes, and the finite element modeling of shear connectors are highlighted. The critical research review showed that the strength of a shear connector decreases proportionally with the increase in temperature. Compared with the volume of work published on shear connectors at ambient temperatures, a few studies on the behavior of shear connectors under fire have been conducted. Several areas where additional research is needed are also identified in this paper.

      • KCI등재

        Portland cement structure and its major oxides and fineness

        A. Nosrati,Y. Zandi,M. Shariati,K. Khademi,M. Darvishnezhad Aliabad,A. Marto,M.A. Mu’azu,E. Ghanbari,M.B. Mahdizadeh,A. Shariati,M. Khorami 국제구조공학회 2018 Smart Structures and Systems, An International Jou Vol.22 No.4

        Predicting the compressive strength of concrete has been considered as the initial phase across the cement production processing. The current study has focused on the integration of the concrete compressive strength in 28 days with the mix of the major oxides and fine aggregates as an experimental formula through the use of two types of Portland cement resulting the compressive strength of the concrete highly dependent on time.

      • SCIESCOPUS

        Portland cement structure and its major oxides and fineness

        Nosrati, A.,Zandi, Y.,Shariati, M.,Khademi, K.,Aliabad, M. Darvishnezhad,Marto, A.,Mu'azu, M.A.,Ghanbari, E.,Mahdizadeh, M.B.,Shariati, A.,Khorami, M. 국제구조공학회 2018 Smart Structures and Systems, An International Jou Vol.22 No.4

        Predicting the compressive strength of concrete has been considered as the initial phase across the cement production processing. The current study has focused on the integration of the concrete compressive strength in 28 days with the mix of the major oxides and fine aggregates as an experimental formula through the use of two types of Portland cement resulting the compressive strength of the concrete highly dependent on time.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼