RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Analytical Modelling of Cutting Force in End-Milling with Minimum Quantity Lubrication

        Linger Cai,Yixuan Feng,Steven Y. Liang 한국정밀공학회 2024 International Journal of Precision Engineering and Vol.25 No.5

        Milling with minimum quantity lubrication (MQL) is a commonly used machining technique in the industry because of its advantage in lowering the cutting temperature and cutting force. Among its wide usage in machining, modeling for milling operations was particularly hard for its complexity. This paper proposed an analytical model for cutting force prediction in the end-milling process with MQL. The 3D milling operation was transferred into equivalent 2D orthogonal cutting at each rotational angle. Then the proposed model incorporated updated friction coefficients due to the MQL with boundary lubrication effect. Based on Oxley’s orthogonal cutting model, the cutting force was calculated with an updated friction coefficient. Two sets of validations were done with experimental measurements using different cutting materials. The proposed model delivered reasonable accuracy for the force prediction with MQL, providing an adequate method for the industry. Based on the model investigation, the friction coefficient in cutting was also significantly affected by the droplet’s layer thickness, which was presumably linearly correlated with the flow speed of the lubricant.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼