RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Multiprotocol-induced plasticity in artificial synapses

        Kornijcuk, Vladimir,Kavehei, Omid,Lim, Hyungkwang,Seok, Jun Yeong,Kim, Seong Keun,Kim, Inho,Lee, Wook-Seong,Choi, Byung Joon,Jeong, Doo Seok The Royal Society of Chemistry 2014 Nanoscale Vol.6 No.24

        <P>We suggest a ‘universal’ electrical circuit for the realization of an artificial synapse that exhibits long-term plasticity induced by different protocols. The long-term plasticity of the artificial synapse is basically attributed to the nonvolatile resistance change of the bipolar resistive switch in the circuit. The synaptic behaviour realized by the circuit is termed ‘universal’ inasmuch as (i) the shape of the action potential is not required to vary so as to implement different plasticity-induction behaviours, activity-dependent plasticity (ADP) and spike-timing-dependent plasticity (STDP), (ii) the behaviours satisfy several essential features of a biological chemical synapse including firing-rate and spike-timing encoding and unidirectional synaptic transmission, and (iii) both excitatory and inhibitory synapses can be realized using the same circuit but different diode polarity in the circuit. The feasibility of the suggested circuit as an artificial synapse is demonstrated by conducting circuit calculations and the calculation results are introduced in comparison with biological chemical synapses.</P>

      • Leaky Integrate-and-Fire Neuron Circuit Based on Floating-Gate Integrator

        Kornijcuk, Vladimir,Lim, Hyungkwang,Seok, Jun Yeong,Kim, Guhyun,Kim, Seong Keun,Kim, Inho,Choi, Byung Joon,Jeong, Doo Seok Frontiers Media S.A. 2016 Frontiers in neuroscience Vol.10 No.-

        <P>The artificial spiking neural network (SNN) is promising and has been brought to the notice of the theoretical neuroscience and neuromorphic engineering research communities. In this light, we propose a new type of artificial spiking neuron based on leaky integrate-and-fire (LIF) behavior. A distinctive feature of the proposed FG-LIF neuron is the use of a floating-gate (FG) integrator rather than a capacitor-based one. The relaxation time of the charge on the FG relies mainly on the tunnel barrier profile, e.g., barrier height and thickness (rather than the area). This opens up the possibility of large-scale integration of neurons. The circuit simulation results offered biologically plausible spiking activity (<100 Hz) with a capacitor of merely 6 fF, which is hosted in an FG metal-oxide-semiconductor field-effect transistor. The FG-LIF neuron also has the advantage of low operation power (<30 pW/spike). Finally, the proposed circuit was subject to possible types of noise, e.g., thermal noise and burst noise. The simulation results indicated remarkable distributional features of interspike intervals that are fitted to Gamma distribution functions, similar to biological neurons in the neocortex.</P>

      • Relaxation oscillator-realized artificial electronic neurons, their responses, and noise

        Lim, Hyungkwang,Ahn, Hyung-Woo,Kornijcuk, Vladimir,Kim, Guhyun,Seok, Jun Yeong,Kim, Inho,Hwang, Cheol Seong,Jeong, Doo Seok The Royal Society of Chemistry 2016 Nanoscale Vol.8 No.18

        <P>A proof-of-concept relaxation oscillator-based leaky integrate-and-fire (ROLIF) neuron circuit is realized by using an amorphous chalcogenide-based threshold switch and non-ideal operational amplifier (op-amp). The proposed ROLIF neuron offers biologically plausible features such as analog-type encoding, signal amplification, unidirectional synaptic transmission, and Poisson noise. The synaptic transmission between pre-and postsynaptic neurons is achieved through a passive synapse (simple resistor). The synaptic resistor coupled to the non-ideal op-amp realizes excitatory postsynaptic potential (EPSP) evolution that evokes postsynaptic neuron spiking. In an attempt to generalize our proposed model, we theoretically examine ROLIF neuron circuits adopting different non-ideal op-amps having different gains and slew rates. The simulation results indicate the importance of gain in postsynaptic neuron spiking, irrespective of the slew rate (as long as the rate exceeds a particular value), providing the basis for the ROLIF neuron circuit design. Eventually, the behavior of a postsynaptic neuron in connection to multiple presynaptic neurons via synapses is highlighted in terms of EPSP evolution amid simultaneously incident asynchronous presynaptic spikes, which in fact reveals an important role of the random noise in spatial integration.</P>

      • Chameleonic electrochemical metallization cells: dual-layer solid electrolyte-inducing various switching behaviours

        Lim, H.,Soni, R.,Kim, D.,Kim, G.,Kornijcuk, V.,Kim, I.,Park, J. K.,Hwang, C.,Jeong, D. Royal Society of Chemistry 2016 Nanoscale Vol.8 No.34

        <P>We present 'unusual' resistive switching behaviours in electrochemical metallization (ECM) cells utilizing a dual-layer (SiOx/GeSex: SiOx on GeSex) solid electrolyte (SE). The observed switching behaviour markedly varies with the thickness of the upper SiOx layer and compliance current: (i) monostable switching, (ii) counter-eightwise bipolar switching, and (iii) combination of monostable and eightwise bipolar switching behaviours. Focusing on cases (i) and (iii), electrical and chemical analyses on these chameleonic cells were performed in an attempt to gain clues to the understanding of the observed complexity. The chemical analysis indicated the upper SiOx layer as a chemical potential well for Cu ions-Cu ions were largely confined in the well. This non-uniform distribution of Cu across the SE perhaps hints at the mechanism for the complex behaviour; it may be a 'zero-sum game' between SiOx and GeSex layers, in which the two layers fight over the limited number of Cu atoms/ions.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼