RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • On the Role of Vapor Trapping for Chemical Vapor Deposition (CVD) Grown Graphene over Copper

        Rü,mmeli, Mark H.,Gorantla, Sandeep,Bachmatiuk, Alicja,Phieler, Johannes,Geißler, Nicole,Ibrahim, Imad,Pang, Jinbo,Eckert, Jü,rgen American Chemical Society 2013 Chemistry of materials Vol.25 No.24

        <P>The role of sample chamber configuration for the chemical vapor deposition of graphene over copper was investigated in detail. A configuration in which the gas flow is unrestricted was shown to lead to graphene with an inhomogeneous number of layers (between 1 and 3). An alternative configuration in which one end of the inner tube (in which the sample is placed) is closed so as to restrict the gas flow leads a homogeneous graphene layer number. Depending on the sample placement, either homogeneous monolayer or bilayer graphene is obtained. Under our growth conditions, the data show local conditions play a role on layer homogeneity such that under quasi-static equilibrium gas conditions not only is the layer number stabilized, but the quality of the graphene improves. In short, our data suggests vapor trapping can trap Cu species leading to higher carbon concentrations, which determines layer number and improved decomposition of the carbon feedstock (CH<SUB>4</SUB>), which leads to higher quality graphene.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/cmatex/2013/cmatex.2013.25.issue-24/cm401669k/production/images/medium/cm-2013-01669k_0007.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/cm401669k'>ACS Electronic Supporting Info</A></P>

      • KCI등재

        Enhancement of NO absorption in ammonium-based solution using heterogeneous Fenton reaction at low H2O2 consumption

        Yuanquan Xiong,Bo Wu,Jinbo Ru,Hao Feng 한국화학공학회 2016 Korean Journal of Chemical Engineering Vol.33 No.12

        A novel NO removal system is designed, where NO is initially oxidized by •OH radicals from the decomposition of hydrogen peroxide (H2O2) over hematite and then absorbed by ammonium-based solution. According to the high performance liquid chromatography (HPLC) profile and the isopropanol injection experiments, the •OH radicals are proved to play a critical role in NO removal. The NO removal efficiency primarily depends on H2O2 concentration, gas hourly space velocity (GHSV), H2O2 feeding rate and reaction temperature, while the flue gas temperature slightly affects the NO removal efficiency. The low H2O2 consumption makes this system a promising technique in NO removal process using wet-method. The evolution of catalyst in reaction is analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), Fourier Transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The nitrite ion and nitrate ion in aqueous solution are detected by the continuous phase flow analyzer. Finally, the macrokinetic parameters of the NO oxidation are obtained by using the initial rate method.

      • Confirming the Dual Role of Etchants during the Enrichment of Semiconducting Single Wall Carbon Nanotubes by Chemical Vapor Deposition

        Ibrahim, Imad,Kalbacova, Jana,Engemaier, Vivienne,Pang, Jinbo,Rodriguez, Raul D.,Grimm, Daniel,Gemming, Thomas,Zahn, Dietrich R. T.,Schmidt, Oliver G.,Eckert, Jü,rgen,Rü,mmeli, Mark H. American Chemical Society 2015 Chemistry of materials Vol.27 No.17

        <P>The search for ways to synthesize single wall carbon nanotubes (SWCNT) of a given electronic type in a controlled manner persists despite great challenges because the potential rewards are huge, in particular as a material beyond silicon. In this work we take a systematic look at three primary aspects of semiconducting enriched SWCNT grown by chemical vapor deposition. The role of catalyst choice, substrate, and feedstock mixture are investigated. In terms of semiconducting yield enhancement, little influence is found from either the binary catalyst or substrate choice. However, a very clear enrichment is found as one adds nominal amounts of methanol to an ethanol feedstock. Yields of up to 97% semiconducting SWCNT are obtained. These changes are attributed to two known etchant processes. In the first, metal SWCNT are preferentially etched. In the second, we reveal etchants also preferentially etch small diameter tubes because they are more reactive. The etchants are confirmed to have a dual role, to preferentially etch metallic tubes and narrow diameter tubes (both metallic and semiconducting) which results in a narrowing of the SWCNT diameter distribution.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/cmatex/2015/cmatex.2015.27.issue-17/acs.chemmater.5b02037/production/images/medium/cm-2015-02037h_0007.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/cm5b02037'>ACS Electronic Supporting Info</A></P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼