RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Analysis of Magnetic Particle Agglomeration Structure and Interaction Forces Between Magnetic Particles

        Jia Long,Zixu Miao,Huihuang Chen,Rongdong Deng,Weiran Zuo,Bao Guo,Jiangang Ku 한국자기학회 2020 Journal of Magnetics Vol.25 No.1

        Chain-like and diamond-shaped magnetic particle agglomeration (MPA) commonly forming in a weak magnetic field are simulated based on the finite element method (FEM), and the effects of particle diameter, magnetic field strength, particle relative magnetic permeability, and particle number in magnetic particle chains (MPCs) and diamond-shaped MPA on the strength of MPA are analysed in detail. The results show that magnetic forces on the centre contact points (CCPs) of MPA are positively correlated with the particle diameter, magnetic field strength, particle relative magnetic permeability, and particle number. In addition, the forces on the CCPs of the MPCs (N=2) have a square relationship with the particle diameter and magnetic field strength and have a power relationship of 1.25 with the particle relative magnetic permeability. The forces on each contact point decrease slowly from the centre to both ends in the MPCs and then rapidly decrease to one value (approximately 0.779 times the forces on the CCPs). As for the diamond-shaped MPA, with the increase in the angle α between the magnetic field and axis of diamond-shaped MPA, the force magnitude of the particle entrained parallelly in the diamond-shaped MPA shows a trend of a “cosine curve” shape and the minimum value is 2109 times that of the entrained particle’s gravity. The angle θ between the direction of the force and the negative X-axis shows a trend of a “sine curve” shape. When α = 25° and 155°, the angle θ of the force on the entrained particle reaches an extreme value, that is, θ = 21.87°. Only if the angle θ reaches 30º can the particle entrained parallelly escape from the diamond-shaped MPA. Thus, the diamond-shaped MPA remains in a stable state and it is difficult to disperse MPA by changing the direction of the magnetic field.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼