RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Study on failure mechanism of line contact structures of nuclear graphite

        Jia Shigang,Yi Yanan,Wang Lu,Liu Guangyan,Ma Qinwei,Sun Libin,Shi Li,Ma Shaopeng 한국원자력학회 2022 Nuclear Engineering and Technology Vol.54 No.8

        Line contact structures, such as the contact between graphite brick and graphite tenon, widely exist in high-temperature gas-cooled reactors. Due to the stress concentration effect, the line contact area is one of the dangerous positions prone to failure in the nuclear reactor core. In this paper, the failure mechanism of line contact structures composed of IG11 nuclear graphite column and brick were investigated by means of experiment and finite element simulation. It was found that the failure process mainly includes three stages: firstly, the damage accumulation in nuclear graphite material led to the characteristic yielding of the line contact structure, but no macroscopic failure can be observed at this stage; secondly, the stresses near the contact area met Mohr failure criterion, and a crack initiated and propagated laterally in the contact zone, that is, local macroscopic failure occurred at this stage; finally, a second crack initiated in the contact area and developed in to a Y-shape, resulting in the final failure of the structure. This study lays a foundation for the structural design and safety assessment of hightemperature gas-cooled reactors

      • KCI등재

        Bacterial Species and Biochemical Characteristic Investigations of Nostoc flagelliforme Concentrates during its Storage

        ( Lifang Yue ),( Hexin Lv ),( Jing Zhen ),( Shengping Jiang ),( Shiru Jia ),( Shigang Shen ),( Lu Gao ),( Yujie Dai ) 한국미생물 · 생명공학회 2016 Journal of microbiology and biotechnology Vol.26 No.4

        Preservation of fresh algae plays an important role in algae seed subculture and aquaculture. The determination and examination of the changes of cell viability, composition, and bacterial species during storage would help to take suitable preservation methods to prolong the preservation time of fresh algae. Nostoc flagelliforme is a kind of edible cyanobacterium with important herbal and dietary values. This article investigated the changes of bacterial species and biochemical characteristics of fresh N. flagelliforme concentrate during natural storage. It was found that the viability of cells decreased along with the storage time. Fourteen bacteria strains in the algae concentrate were identified by PCR-DGGE and were grouped into four phyla, including Cyanobacteria, Firmicutes, Proteobacteria, and Bacteroidetes. Among them, Enterococcus viikkiensis may be a concern in the preservation. Eleven volatile organic compounds were identified from N. flagelliforme cells, in which geosmin could be treated as an indicator of the freshness of N. flagelliforme. The occurrence of indole compound may be an indicator of the degradation of cells.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼