RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Mercury ion adsorption on AC@Fe3O4-NH2-COOH from saline solutions: Experimental studies and artificial neural network modeling

        Mohammad Pazouki,Mohammad Zabihi,Jalal Shayegan,Mohammad Hossein Fatehi 한국화학공학회 2018 Korean Journal of Chemical Engineering Vol.35 No.3

        An efficient, novel functionalized supported magnetic nanoparticle (AC@Fe3O4-NH2-COOH) has been synthesized by co-precipitation method for removal of mercury ions from saline solutions. High dispersed supported magnetic nanoparticles with particle sizes less than 30 nm were formed over activated carbon derived from local walnut shell. Surface characterizations of supported magnetic nanoparticles were evaluated by Boehm test, Brunauer- Emmett-Teller (BET) surface area, X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and X-ray fluorescence (XRF). A three-layer artificial neural network (ANN) code was developed to predict the Hg (II) ions removal from aqueous solution by AC@Fe3O4-NH2-COOH. The three-layer back-propagation (BP) is configured of tangent sigmoid transfer function (tansig) at hidden layer with eight neurons for AC@Fe3O4-NH2-COOH, and linear transfer function (purelin) at output layer. According to the calculated MSEs, Levenberg-Marquardt algorithm (LMA) was the best training algorithm among others. The linear regressions between the predicted and experimental outputs were proven to be a good agreement with a correlation coefficient of about 0.9984 for five model variables. Maximum adsorption capacity was achieved 80mg/g by Langmuir isotherm at pH of 7 and salinity of 25,000 ppm. Kinetic studies illustrated that mercury adsorption follows pseudo-second-order.

      • KCI등재

        Statistical assessment of starch removal from starchy wastewater using membrane technology

        Javad Sargolzaei,Amin Hedayati Moghaddam,Jalal Shayegan 한국화학공학회 2011 Korean Journal of Chemical Engineering Vol.28 No.9

        The present work deals with application of 2^(5-2) fractional factorial design (FFD) to evaluate the operating parameters on starch separation from synthetic starchy wastewater using a hydrophilic polyethersulfone membrane with 0.65 μm pore size in a plate and frame handmade membrane module. The analysis of variance (ANOVA) combined with F-test was also used to recognize non-significant terms. The performance of the filtration process was evaluated by calculating the COD removal percentage (rejection factor) and permeate flux. In this experiment, five input parameters were surveyed, including trans membrane pressure (TMP), flow and temperature of feed, pH and concentration of wastewater. In this experiment, real wastewater was not used but synthetic starchy wastewater was prepared using starch. Two models were obtained from experimental data, capable of predicting COD removal percentage and permeate flux in different conditions. The predicted values obtained from the regression models were close to the actual ones. For the reduction of fouling, cleaning in place (CIP) method was used.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼