RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재
      • Korea Atomic Energy Research Institute (KAERI)

        Hyun Woo Song,Moonoh Kim,Sang June Park,Sungjun Kim,Su-il Bang 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.2

        Colloid migration is an important topic in post-closure safety assessment of radioactive waste repository as radionuclide can be adsorbed onto colloidal particles and migrated along with the colloids. This would reduce retardation of radionuclide migration, thus increasing the released concentration into biosphere. Recently, glass fiber waste has been found to contain small sized crushed glass fiber particles (GFPs), and concerns regarding the colloidal impact of GFP is being discussed. In this study, relevance of assessing GFPs facilitated radionuclide transport in the disposal environment of 1st phase disposal facility. Colloidal impact assessment can be divided into two sections, colloid mobility, and colloid sorption assessments. Considering GFP being denser than water, fluid velocity of 1st phase disposal facility is too slow to initiate movement of such dense particles. GFPs would remain settled, and no colloidal impact is expected. In this study, sorption assessment mainly focused to analyze the possible impact if migration of GFP does occur. The GFP is mainly composed of SiO2 and few other metal oxides. Due to high composition of SiO2 in the GFPs, negative surface charge is induced onto the surface of the GFPs in alkaline environment. This negatively charged surface can attract free positive ions (ex. Ni, Co, Fe, etc.) in the repository, and these ions would be adsorbed onto the surface of the GFPs via coulomb force. Thus, if GFPs migrate, colloid facilitated radionuclide transport can be expected. However, before being released into the biosphere, particles must pass through the engineered and natural barriers, where ion-colloid-rock interactions could result in transfer of radionuclide from one media to another. At Naka Research Center, Japan, ion-colloid-rock interactions are experimented with bentonite colloid, and the result showed that despite colloid’s sorption ability was 10 times higher than the barrier material, the overall released radionuclide concentration has negligible change. To reflect such phenomenon, coulomb attractive force of GFPs and concrete is calculated and compared, which the result showed that glass fiber was 10 times weaker than concrete. Considering the Japan’s experimental result, glass fiber facilitated transport would not enhance the radionuclide release into the biosphere. Nonetheless, assuming GFPs being mobile in 1st phase disposal facility, GFPs’ sorption ability is found to be negligible compared to the concrete of the repository, thus radionuclide transport is not expected to be enhanced. In future, this study could be used as basis for further colloidal impact analysis for the safety assessment of the repository.

      • Conceptual Operation System Design and Procedure for Deep Borehole Disposal Using the Wireline Emplacement Method

        Hyun Woo Song,Moonoh Kim,Dong-Keun Cho,Changsoo Lee 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.2

        Despite the increasing interest in Deep Borehole Disposal (DBD) for its capability of minimizing disposal area, detailed research about DBD operation system design should be conducted before the DBD can be implemented. Recently, DBD operation system applying wireline emplacement (WE) technique is under study due to its high flexibility and capability of minimizing surface equipment. In this study, a conceptual WE system, and operation procdure is introduced. The conceptual WE system consists of 3 main stations, which from the top are hoisting station (HS), canister connection station (CCS) and basement (BS). In HS, WE is controlled and monitored. The WE is controlled using wireline drum winch and sheaves, and load on wireline is measured using a load cell. HS also has a pressure control system (PCS), which monitors internal pressure of the system, and a lubricator, which act as housing for joint device, allowing the joint device to be easily inserted into the borehole. The joint device is used to connect the disposal canister to wireline for emplacement/retrieval. In CCS, a rail transporter brings a transport cask containing disposal canisters, then the transport cask is connected to the hoisting system and a PCS in the BS. The main component located at canister station are a sliding shielding door (SSD), and a slip. The SSD is used to prevent canister from falling into borehole during the connecting operation and prevent radiation from BS to affect the workers. The slip is located beneath the SSD and is used to hold the disposal canister before it is lowered into the borehole. In BS, PCS is installed to prevent overflow and blowout of borehole fluid. The PCS consists of wireline pressure valve, christmas tree and BOP, which all are a type of pressure valve to seal the borehole and release pressure inside the borehole. The WE procedure starts with transporting transport cask to CCS. The transport cask is connected to lubricator, and PCS. Joint device is lowered down to be connected with disposal canisters, then pulled up to check the load on the wireline. After the check-up, SSD is opened, and disposal canister is lowered into the borehole. When desired depth is reached, joint device is disconnected and retrieved for next emplacement. In this study, the conceptual deep borehole disposal system design implementing WE technique is introduced. Based on this study, further detailed design could be derived in future, and feasibility could be tested.

      • Analysis on Factors to Be Considered for the Safety Assessment of Colloids

        Hyun Woo Song,Moonoh Kim,Sang June Park,Sungjun Kim,Jun-gi Yeom 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.1

        Concerns with colloids, dispersed 1~1,000 nm particles, in the LILW repository are being raised due to their potential to enhance radionuclide release. Due to their large surface areas, radionuclides may sorb onto mobile colloids, and drift along with the colloidal transport, instead of being sorbed onto immobile surfaces. To prevent adverse implications on the safety of the repository, the colloidal impact must be evaluated. In this paper, colloid analysis done by SKB is studied, and factors to be considered for the safety assessment of colloids are analyzed. First, the colloid generation mechanism should be analyzed. In a cementitious repository, due to a highly alkaline environment, colloid formation from wastes may be promoted by the decomposition of organic materials, dissolution of inorganic materials, and corrosion of metals. Radiolysis is excluded when radionuclide inventory is moderate, as in the case of SKB. Second, colloid stability should be evaluated to determine whether colloids remain in dispersion. Stable colloids acquire electric charges, allowing particles to continuously repel one another to prevent coagulation. Thus, stability depends on the pH and ionic condition of the surroundings, and colloid composition. For instance, under a highly alkaline cementitious environment, colloids tend to be negatively charged, repelling each other, but Ca2+ ion from cement, acting as a coagulant, makes colloid unstable, promoting sedimentation. As in the case of SKB, the colloidal impact is assumed negligible in the silo, BMA, and BTF due to their extensive cement contents, but for BLA, with relatively less cement source, the colloidal impact is a potential concern. Third, colloid mobility should be assessed to appraise radionuclide release via colloid transport. The mobility depends on the density and size of colloids, and flow velocity to commence motion. As a part of the assessment, the filtration effect should also be included, which depends on pore size and structure. As in the case of SKB, due to static hydraulic conditions and engineering barriers, acting as efficient filters, colloidal transport is expected to be unlikely. In the domestic underground repository, the highly alkaline environment would lead to colloid formation, but due to high Ca2+ concentration and low flow velocity, colloids would achieve low stability and mobility, thus colloidal impact would be a minor concern. In the future, with further detailed analysis of each factor, waste composition, and disposal condition, reliable data for safety evaluation could be generated to be used as fundamental data for planning waste acceptance criteria.

      • Proposal on the Cellulose Degradation Model for the Domestic 1st Phase Underground Repository

        Hyun Woo Song,Moonoh Kim,Sang June Park,Sungjun Kim,Jun-gi Yeom 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.1

        With the recent concern regarding cellulose enhancing radionuclide mobility upon its degradation to ISA, disposal of cellulosic wastes is being held off until the disposal safety is vindicated. Thus, a rational assessment should be conducted, applying an appropriate cellulose degradation model considering the disposal environment and cellulose degradation mechanisms. In this paper cellulose degradation mechanisms and the disposal environment are studied to propose the best-suitable cellulose degradation model for the domestic 1st phase repository. For the cellulose to readily degrade, the pH should be greater than 12.5. As in the case of SKB, 1BLA is excluded from the safety assessment because the pH of 1BLA remains below 12.5. Furthermore, despite cellulose degradation occurring, it does not always produce ISA. At low Ca2+ concentration, the ISA yield rate is around 25%, but at high Ca2+ concentration, the ISA yield rate increases up to 90%. Thus, for the cellulose to be a major concern, both pH and Ca2+ concentration conditions must be satisfied. To satisfy both conditions, the cement hydration must be in 2nd phase, when the porewater pH remains around 12.5 and a significant amount of Ca2+ ion is leaching out from the cement. However, according to the safety evaluation and domestic research, 2nd phase of cement hydration for silo concrete would achieve a pH of around 12.4, dissatisfying cellulose degradation condition like in 1BLA. Thus, cellulose degradation would be unlikely to occur in the domestic 1st phase repository. To derive waste acceptance criteria, a quantitative evaluation should be conducted, conservatively assuming cellulose is degraded. To conduct a safety evaluation, an appropriate degradation model should be applied to determine the degradation rate of cellulose. According to overseas research, despite the mid-chain scission being yet to be seen in the experiments, the degradation model considering mid-chain scission is applied, resulting in an almost 100% degradation rate. The model is selected because the repositories are backfilled with cement, achieving a pH greater than 13, so extensive degradation is reasonably conservative. However, under the domestic disposal condition, where cellulose degradation is unlikely to occur, applying such model would be excessively conservative. Thus, the peeling and stopping model derived by Van Loon and Haas, which suggests 10~25% degradation rate, is reasonably conservative. Based on this model, cellulose would not be a major concern in the domestic 1st phase repository. In the future, this study could be used as fundamental data for planning waste acceptance criteria.

      • A Study on the Impact of Animal Intrusion Into Near-Surface Disposal Facility for LLW Radioactive Waste

        Hyun Woo Song,Moonoh Kim,Hyosub Kim,Sang June Park,Suil Bang 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.1

        Near-surface disposal facility is more susceptible to intrusion than underground repository, resulting in more possible pathways for contaminant release. Alike human intrusion, animals (e.g. Ants, Moles, etc.) could intrude into the disposal site to excavate burrows, which could cause direct release of contaminants to biosphere. In this paper, animal intrusion is demonstrated using GoldSim’s commercial contaminant transport module and impact on the integrity of the near-surface disposal facility is evaluated in terms of fractional release rate of the contaminants. In this study, the near-surface disposal facility is modelled with a single concrete vault to contain radionuclide according to LLW concentration limit stated in NSSC notice No.2020-6. The release of contaminants is modelled to occur directly after the institutional control period, and the contaminants are mostly transported from the concrete vault to cover layers via diffusion. To produce mathematical model of the release of the contaminants due to animal intrusion, firstly, the fraction of burrow volume for each cover layer is calculated separately for each animal species, based on their maximum possible intrusion depth. In this study, fractions of burrow volume for ants and moles are calculated based on their maximum possible intrusion depths, where for ants is 2–3 m, and for moles is 0.1–0.135 m. Then, assuming that the contaminants are distributed homogeneously throughout each cover layers by diffusion, fraction of contaminants transported into the uppermost layer via excavation of the burrow is calculated for each layer based on burrow volume, and fraction of contaminants removed from the uppermost layer to the layers below via collapse of the burrow is also calculated based on the burrow volume. Lastly, the net transportation of contaminants into and out of the burrow via excavation and collapse, respectively, is calculated and demonstrated using direct transfer rate function of the GoldSim. Based on the simulated result, the maximum mass flux is too minor to cause a meaningful impact on the safety. The peak mass flux of the most sensitive radionuclide, I-129, is witnessed at around year 1,470, with a flux value of 5.36×10?6 g·yr?1. This minor release of the contaminants could be due to cover layers being much thicker than the maximum possible intrusion depth of the animals, preventing the animal intrusion into the deeper layers of higher radionuclide concentration. In future, this study can be used to provide a guidance and fundamental data for scenario development and safety evaluation of the near-surface disposal facility.

      • A Study on the Factors Required to Be Considered for Safety Assessment of Cellulose Degradation

        Hyun Woo Song,Moonoh Kim,Sang June Park,Suil Bang 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.1

        Recently, concern regarding disposal of cellulosic material is growing as cellulose is known to produce complexing agent, isosaccharinic acid (ISA), upon degradation. ISA could enhance mobility of some radionuclides, thus increasing the amount of radionuclide released into the environment. Thus, evaluation on the possible impact of the cellulose degradation would be an important aspect in safety evaluation. In this paper, safety assessments conducted in Sweden and UK are studied, and the factors required to be considered for appropriate safety assessment of cellulose is analyzed. SKB (Sweden) conducted safety assessment of cellulose degradation as a part of long-term safety assessment of SFR. SKB determined that ISA would impact sorption of trivalent and tetravalent radionuclides (Eu, Am, Th, Np, Pa, Pu, U, Tc, Zr and Nb) at concentration higher than 10?4–10?3 M, and impact sorption of divalent radionuclides (Ni, Co, Fe, Be and Pb) at concentration higher than 10?2 M. Then, SKB conservatively set the upper limit of ISA concentration to be 10?4 M and conducted cellulose degradation evaluation on each waste package type, considering the expected disposal environment of SFR. Based on the calculated results, some of the waste packages showed concentration of ISA to be higher than 10?4 M, so SKB conservatively developed waste acceptance criteria to prevent ISA being produced to an extent of affecting the safety of the repository. SKB conducted safety assessment only for the repositories with pH above 12.5 and excluded 1BLA from the safety assessment as the expected pH of 1BLA is around 12, which is insufficient for cellulose to degrade. However, SKB set disposal limit for 1BLA as well, to minimize potential impact in future. Serco (UK) conducted safety assessment of cellulose degradation for the conceptual repository, which is a concrete vault with cementitious backfill. Serco estimated that the pH of repository would maintain around 12.4. Serco conservatively assumed that the pH would be sufficient for cellulose degradation to occur partially, and suggested application of appropriate degradation ratio for safety assessment of cellulose degradation. To conduct appropriate safety assessment of cellulose degradation, an appropriate ISA concentration limit based on radionuclide inventory list, and an appropriate cellulose degradation ratio based on the pH of disposal environment should be determined. As for guidance, below pH 12.5, cellulose degradation is not expected, and between pH 12.5–13, partial cellulose degradation is expected. In future, this study could be used as fundamental data to evaluate safety of the repository.

      • Preliminary Safety Evaluation for Cellulose Disposal at 1st Phase Disposal Facility

        Hyun Woo Song,Moonoh Kim,Sang June Park,Suil Bang 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.1

        Recently, concern regarding disposal of cellulosic material is growing as cellulose is known to produce complexing agent, isosaccharinic acid (ISA), upon degradation. ISA could enhance mobility of some radionuclides, thus increasing the amount of radionuclide released into the environment. Evaluation on the possible impact of the cellulose degradation would be an important aspect in safety evaluation. In this paper, the maximum safe disposal amount cellulose is evaluated considering the disposal environment of silos of 1st phase disposal facility. The key factor governing the impact of cellulose degradation is pH of disposal environment, as cellulose is known to degrade partially at pH above 12.5, and completely at pH above 13. Thus, disposal environment should be analyzed as to determine the extent of degradation. As silos are constructed with large amount of cement, porewater within concrete walls would be of very high pH. However, for high pH porewater to be released into the pores of crushed rock, which is filling up the silos, lower pH groundwater (commonly pH 7) should flow into the silos through the concrete walls. This causes dilution of the high pH concrete porewater, resulting in a lower pH as the silos are filled, reaching to expected pH of 11.8–12.3, which is below cellulose degradation condition. Thus, cellulose degradation is not expected, but to quantitatively evaluate safe disposal amount of cellulose, partial degradation is assumed. Upon literature review, the most conservative ISA concentration, enhancing radionuclide mobility, is determined to be 1.0×10?4 M and to reach this concentration, cellulose mass equivalent to 6wt% of cement of the repository, is required to be degraded. However, this ratio is derived based on complete degradation of cellulose into ISA, so for partial degradation, degradation ratio and yield ratio of ISA should be considered. Commonly, cellulosic material (e.g. cotton, paper, etc.) has degree of polymerization (DP) between 1,000–2,000, and with this DP, degradation ratio is estimated to be about 10%. Furthermore, yield ratio of ISA is known to be 80%. Considering all these aspects, about 1.79×107 kg of cellulose could be disposed, which if converted into number of drums, considering cellulose content of dry active waste, more than 100,000 drums (200 L) could be disposed with negligible impact on safety. Based on the result, negligible impact of cellulose degradation is expected for safety of 1st phase disposal facility. In future, this study could be used as fundamental data for revising waste acceptance criteria.

      • A Background Study of VLLW Spent Resin Solidification

        Hyun Woo Song,Sang June Park,Jun-gi Yeom,Moonoh Kim 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.2

        Domestic waste acceptance criteria (WAC) require flowable or homogeneous wastes, such as spent resin, concentrated waste, and sludge, etc., to be solidified regardless of radiation level, to provide structural integrity to prevent collapse of repository, and prevent leaching. Therefore, verylow level (VLL) spent resin (SR) would also require to be solidified. However, such disposal would be too conservative, considering IAEA standards do not require robust containment and shielding of VLL wastes. To prevent unnecessary cost and exposure to workers, current WAC advisable to be amended, thus this paper aims to provide modified regulation based on reviewed engineering background of solidification requirement. According to NRC report, SR is classified as wet-solid waste, which is defined as a solid waste produced from liquid system, thus containing free-liquid within the waste. NRC requires liquid wastes to be solidified regardless of radiation level to prevent free liquid from being disposed, which could cause rapid release of radionuclides. Furthermore, considering class A waste does not require structural integrity, unlike class B and C wastes, dewatering would be an enough measure for solidification. This is supported by the cases of Palo Verde and Diablo Canyon nuclear power plants, whose wet-solid wastes, such as concentrated wastes and sludge, are disposed by packaging into steel boxes after dewatering or incineration. Therefore, dewatering VLL spent resin and packaging them into structural secure packaging could satisfy solidification goal. Another goal of solidification is to provide structural support, which was considered to prevent collapse of soil covers in landfills or trenches. However, providing structural support via solidification agent (ex. Cement) would be unnecessary in domestic 2nd phase repository. As the domestic 2nd phase repository is cementitious structure, which is backfilled with cement upon closure, the repository itself already has enough structural integrity to prevent collapse. Goldsim simulation was run to evaluate radiation impact by VLL SR, with and without solidification, by modelling solidified wastes with simple leaching, and unsolidified wastes with instant release. Both simulations showed negligible impact on radiation exposure, meaning that solidifying VLL SR to delay leaching would be irrational. Therefore, dewatering VLL SR and packaging it into a secure drum (ex. Steel drum) could achieve solidification goals described in NRC reports and provide enough safety to be disposed into domestic repositories. In future, the studied backgrounds in this paper should be considered to modify current WAC to achieve efficient waste management.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼