RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Computational Screening of Nanoporous Materials for Hexane and Heptane Isomer Separation

        Chung, Yongchul G.,Bai, Peng,Haranczyk, Maciej,Leperi, Karson T.,Li, Peng,Zhang, Hongda,Wang, Timothy C.,Duerinck, Tim,You, Fengqi,Hupp, Joseph T.,Farha, Omar K.,Siepmann, J. Ilja,Snurr, Randall Q. American Chemical Society 2017 Chemistry of materials Vol.29 No.15

        <P>Computational high-throughput screening was carried out to assess a large number of-experimentally reported metal-organic frameworks (MOFs) and zeolites for their utility in hexane isomer separation. Through the work, we identified many MOFs and zeolites with high selectivity (SL+M > 10) for the group of n-hexane, 2-methylpentane, and 3-methylpentane (linear and monobranched isomers) versus 2,2-dimethylbutane and 2,3-dimethylbutane (dibranched isomers). This group of selective sorbents includes VICDOC (Fe-2(BDP)(3)), a MOF with triangular pores that is known to exhibit high isomer selectivity and capacity. For three of these structures, the adsorption isotherms for a 10-component mixture of hexane and heptane isomers were calculated. Subsequent simulations of column breakthrough curves showed that the DEYVUA MOF exhibits a longer process cycle time than VICDOC MOF or MRE zeolite, which are previously reported, high-performing materials, illustrating the importance of capacity in designing MOFs for practical applications. Among the identified candidates, we synthesized and characterized a MOF in a new copper form with high predicted adsorbent capacity (q(L+M) > 1.2 mol/L) and moderately high selectivity (SL+M approximate to 10). Finally, we examined the role of pore shape in hexane isomer separations, especially of triangular-shaped pores. We show through the potential energy surface and three-dimensional siting analyses that linear alkanes do not populate the corners of narrow triangular channels and that structures with nontriangular pores can efficiently separate hexane isomers. Detailed thermodynamic analysis illustrates how differences in the free energy of adsorption contribute to shape selective separation in nanoporous materials.</P>

      • An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage

        Allendorf, Mark D.,Hulvey, Zeric,Gennett, Thomas,Ahmed, Alauddin,Autrey, Tom,Camp, Jeffrey,Seon Cho, Eun,Furukawa, Hiroyasu,Haranczyk, Maciej,Head-Gordon, Martin,Jeong, Sohee,Karkamkar, Abhi,Liu, Di-J The Royal Society of Chemistry 2018 ENERGY AND ENVIRONMENTAL SCIENCE Vol.11 No.10

        <P>Nanoporous adsorbents are a diverse category of solid-state materials that hold considerable promise for vehicular hydrogen storage. Although impressive storage capacities have been demonstrated for several materials, particularly at cryogenic temperatures, materials meeting all of the targets established by the U.S. Department of Energy have yet to be identified. In this Perspective, we provide an overview of the major known and proposed strategies for hydrogen adsorbents, with the aim of guiding ongoing research as well as future new storage concepts. The discussion of each strategy includes current relevant literature, strengths and weaknesses, and outstanding challenges that preclude implementation. We consider in particular metal-organic frameworks (MOFs), including surface area/volume tailoring, open metal sites, and the binding of multiple H2 molecules to a single metal site. Two related classes of porous framework materials, covalent organic frameworks (COFs) and porous aromatic frameworks (PAFs), are also discussed, as are graphene and graphene oxide and doped porous carbons. We additionally introduce criteria for evaluating the merits of a particular materials design strategy. Computation has become an important tool in the discovery of new storage materials, and a brief introduction to the benefits and limitations of computational predictions of H2 physisorption is therefore presented. Finally, considerations for the synthesis and characterization of hydrogen storage adsorbents are discussed.</P>

      • Materials Genome in Action: Identifying the Performance Limits of Physical Hydrogen Storage

        Thornton, Aaron W.,Simon, Cory M.,Kim, Jihan,Kwon, Ohmin,Deeg, Kathryn S.,Konstas, Kristina,Pas, Steven J.,Hill, Matthew R.,Winkler, David A.,Haranczyk, Maciej,Smit, Berend American Chemical Society 2017 Chemistry of materials Vol.29 No.7

        <P/><P>The Materials Genome is in action: the molecular codes for millions of materials have been sequenced, predictive models have been developed, and now the challenge of hydrogen storage is targeted. Renewably generated hydrogen is an attractive transportation fuel with zero carbon emissions, but its storage remains a significant challenge. Nanoporous adsorbents have shown promising physical adsorption of hydrogen approaching targeted capacities, but the scope of studies has remained limited. Here the Nanoporous Materials Genome, containing over 850 000 materials, is analyzed with a variety of computational tools to explore the limits of hydrogen storage. Optimal features that maximize net capacity at room temperature include pore sizes of around 6 Å and void fractions of 0.1, while at cryogenic temperatures pore sizes of 10 Å and void fractions of 0.5 are optimal. Our top candidates are found to be commercially attractive as “cryo-adsorbents”, with promising storage capacities at 77 K and 100 bar with 30% enhancement to 40 g/L, a promising alternative to liquefaction at 20 K and compression at 700 bar.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼