RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Anisotropic and amphoteric characteristics of diverse carbenes

        Kim, Dong Yeon,Yang, D. ChangMo,Madridejos, Jenica Marie L.,Hajibabaei, Amir,Baig, Chunggi,Kim, Kwang S. The Royal Society of Chemistry 2018 Physical chemistry chemical physics Vol.20 No.20

        <P>Despite its key importance in carbene chemistry, the amphoteric (<I>i.e.</I>, both nucleophilic and electrophilic) behavior of the divalent carbon atom (:C) in carbenes is not well understood. The electrostatic potential (EP) around :C is often incorrectly described by simple isotropic atomic charges (particularly, as in singlet CF2); therefore, it should be described by the multipole model, which can illustrate both negative and positive EPs, favoring the positively and negatively charged species that are often present around :C. This amphotericity is much stronger in the singlet state, which has more conspicuous anisotropic charge distribution than the triplet state; this is validated by the complexation structures of carbenes interacting with Na<SUP>+</SUP>, Cl<SUP>−</SUP>, H2O, and Ag<SUP>+</SUP>. From the study of diverse carbenes [including CH2, CLi2/CNa2, CBe2/CMg2, CF2/CCl2, C(BH2)2/C(AlH2)2, C(CH3)2/C(SiH3)2, C(NH2)2/C(PH2)2, cyclic systems of C(CH2)2/C(CH)2, C(BHCH)2, C(CH2CH)2/C(CHCH)2, and C(NHCH)2/C(NCH)2], we elucidate the relationships between the electron configurations, electron accepting/donating strengths of atoms attached to :C, π conjugation, singlet-triplet energy gaps, anisotropic hard wall radii, anisotropic electrostatic potentials, and amphotericities of carbenes, which are vital to carbene chemistry. The (σ<SUP>2</SUP>, π<SUP>2</SUP> or σπ) electronic configuration associated with :C on the :CA2 plane (where A is an adjacent atom) in singlet and triplet carbenes largely governs the amphoteric behaviors along the :C tip and :C face-on directions. The :C tip and :C face-on sites of σ<SUP>2</SUP> singlet carbenes tend to show negative and positive EPs, favoring nucleophiles and electrophiles, respectively; meanwhile, those of π<SUP>2</SUP> singlet carbenes, such as very highly π-conjugated 5-membered cyclic C(NCH)2, tend to show the opposite behavior. Open-shell σπ singlet (such as highly π-conjugated 5-membered cyclic C(CHCH)2) and triplet carbenes show less anisotropic and amphoteric behaviors.</P>

      • Graphene and Graphene Analogs toward Optical, Electronic, Spintronic, Green-Chemical, Energy-Material, Sensing, and Medical Applications

        Rezapour, M. Reza,Myung, Chang Woo,Yun, Jeonghun,Ghassami, Amirreza,Li, Nannan,Yu, Seong Uk,Hajibabaei, Amir,Park, Youngsin,Kim, Kwang S. American Chemical Society 2017 ACS APPLIED MATERIALS & INTERFACES Vol.9 No.29

        <P>This spotlight discusses intriguing properties and diverse applications of graphene (Gr) and Gr analogs. Gr has brought us two-dimensional (2D) chemistry with its exotic 2D features of density of states. Yet, some of the 2D or 2D-like features can be seen on surfaces and at interfaces of bulk materials. The substrate on Gr and functionalization of Gr (including metal decoration, intercalation, doping, and hybridization) modify the unique 2D features of Gr. Despite abundant literature on physical properties and well-known applications of Gr, spotlight works based on the conceptual understanding of the 2D physical and chemical nature of Gr toward vast-ranging applications are hardly found. Here we focus on applications of Gr, based on conceptual understanding of 2D phenomena toward 2D chemistry. Thus, 2D features, defects, edges, and substrate effects of Gr are discussed first. Then, to pattern Gr electronic circuits, insight into differentiating conducting and nonconducting regions is introduced. By utilizing the unique ballistic electron transport properties and edge spin states of Gr, Gr nanoribbons (GNRs) are exploited for the design of ultrasensitive molecular sensing electronic devices (including molecular fingerprinting) and spintronic devices. The highly stable nature of Gr can be utilized for protection of corrosive metals, moisture-sensitive perovskite solar cells, and highly environment-susceptible topological insulators (TIs). Gr analogs have become new types of 2D materials having novel features such as half-metals, TIs, and nonlinear optical properties. The key insights into the functionalized Gr hybrid materials lead to the applications for not only energy storage and electrochemical catalysis, green chemistry, and electronic/spintronic devices but also biosensing and medical applications. All these topics are discussed here with the focus on conceptual understanding. Further possible applications of Gr, GNRs, and Gr analogs are also addressed in a section on outlook and future challenges.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼