RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Effect of Electron Accepters on Step-up Photophobic Responses of Blephalisma japonicum

        Youssef, Tareq,Angelini, Nicola,Gioffre, Domenico,Sgarbossa, Antonella,Lenci, Francesco Korean Society of Photoscience 2000 Journal of Photosciences Vol.7 No.1

        The photosensory ciliates Blepharisma japonicum and Stentor coeruleus use the hypericin-derived pigments blepharismin and stentorin, respectively, as photoreceptor chromophores. Fluorescence quenching studies have shown that the first excited singlet state of hypericin and the purified chromophores blepharismin and stentorin can be deactivated by electron transfer to an acceptor molecule with a suitable reducing potential [1,2]. This paper reports the result of a series of photobehavioral experiments performed with the aim to ascertain if the same electron accepters which quench the photoreceptor pigment fluorescence in vitro may also compete with the native acceptor molecule in its natural physiological environment. Individual cell trajectories were examined before and after light stimulation, in the presence and in the absence of potential "in vivo" electron accepters, with a microvideo-recording apparatus. Our data, on Blepharisma cells, showed that as the negative reduction potential of the electron acceptor increases, a pronounced decrease in cell photoresponsiveness was detected. A dramatic effect on cell photoresponsiveness was noticed in the presence of 1,4-benzoquinone that has the lowest negative reduction potential. Such an effect on the percentage of photoreacting cells was moderate in the case of 1,4-naphthoquinone, with a relatively higher negative reduction potential. In the presence of benzophenone, which has the highest negative reduction potential, no significant effect on photoreacting cells was noticed. Our results can support the hypothesis that in the pigment granules such a light-induced charge transfer from excited blepharismin to a suitable electron acceptor triggers sensory transduction processes in B. japonicum.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼