RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Prediction of Proton Exchange and Bacterial Growth on Various Substrates Using Constraint-based Modeling Approach

        Ehsan Motamedian,Fereshteh Naeimpoor 한국생물공학회 2011 Biotechnology and Bioprocess Engineering Vol.16 No.5

        Proton exchange between cells and medium is one of the most important factors affecting culture pH, and hence its prediction is advantageous. In this research,proton exchange flux across the cell membrane was predicted using a genome-scale model. Calculated proton exchange flux was then exploited as a criterion to predict the trends and intensities of pH changes in cultures of Bacillus subtilis containing various C-sources, i.e. glucose,sucrose, glycerol, lactate, and citrate, as well as N-sources,i.e. ammonium chloride, sodium nitrate, urea, and histidine. The results showed that glucose, sucrose, and glycerol lowered culture pH as compared to citrate and lactate,which raised it. With regard to N-sources, the model predicted that ammonium chloride lowered culture pH while other sources raised pH. Furthermore, maximum theoretical biomass yield using the various C&N-sources was calculated, and sensitivity of microbial growth to proton exchange flux was investigated using robustness analysis to identify the effect of pH on growth of B. subtilis using different substrates. Finally, the effect of ammonium nitrate, a widely used nitrogen source, on growth of B. subtilis was studied. Experimental data obtained by cultivation of B. subtilis DSM 3256 on mineral salt media containing various C&N-sources were used to confirm model predictions. Model predictions were in good agreement with the experimental results for all of the examined C-sources as well as ammonium chloride and sodium nitrate as N-sources. However, the predictions for the N-sources urea and histidine showed deviations,possibly because these two compounds serve as both C&N-sources.

      • KCI등재

        Effect of hydraulic retention time and temperature on submerged membrane bioreactor (SMBR) performance

        Alireza Hemmati,Toraj Mohammdi,Mohsen Maghami Dolatabad,Fereshteh Naeimpoor,Afshin Pak 한국화학공학회 2012 Korean Journal of Chemical Engineering Vol.29 No.3

        Water shortages and strict environmental provisions necessitate wastewater renovation using various wastewater treatment methods, among which applications of submerged membrane bioreactors (SMBRs) are rapidly increasing due to their advantages such as high loading capacity and quality of effluent. In this work, the effect of hydraulic retention time (HRT 8, 10 and 12 h) and temperature (25, 30 and 35 oC) on membrane fouling and sludge production was investigated in a 5-Liter SMBR equipped with immersed PVDF hollow fiber membrane module. Phenolic synthetic wastewater and acclimatized activated sludge with phenol during a 2-month period were used as toxic and microbial sources, respectively. Results showed that by increasing HRT membrane fouling decreases, while excellent treatment performance of over 99.5% phenol and 95% COD removals was achieved at all HRTs. Therefore, HRT=8 h corresponding to the highest effluent flow rate of 12 L/m2·h was used to investigate the effect of temperature, resulting in phenol and COD removals of higher than 99 and 96%, respectively, at all temperatures. Membrane fouling occurred at 12, 5 and 3 days for 25, 30 and 35 oC, respectively. Additionally, the effect of HRT and temperature on mixed liquor volatile suspended solid (MLVSS) as a measure of biomass was examined. MLVSS concentration showed decreases with increasing HRT and temperature. Overall, it was shown that SMBR can be used to efficiently treat phenolic wastewater at a range of flow rates and temperatures, among which HRT=8 h and T=25 oC are the preferred operating conditions,resulting in high flow rate and low membrane fouling.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼