RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Anti-cancer Effect of Hyoscyamus muticus Extract via Its Activation of Fas/FasL-ASK1-p38 Pathway

        Amer Ali Abd El-Hafeez,Hala Mohamed M. Marzouk,Mohamed A. A. Abdelhamid,Hazim O. Khalifa,Tamer H. A. Hasanin,Ahmed G. K. Habib,Fatma Mahmoud Abdelwahed,Fatma M. Barakat,Eslam M. Bastawy,Eman M. B. Abd 한국생물공학회 2022 Biotechnology and Bioprocess Engineering Vol.27 No.5

        Hyoscyamus muticus L. is a traditional medicine used as antispasmodic and sedative. Herein, we aimed to determine the phytochemical constituents and for the first time its anti-cancer activities. The phytochemical constituents of the different extracts were evaluated by calorimetric methods. The anti-cancer activities of the extracts were tested against leukemia, breast, renal, and prostate cancers cell lines. 4, 6-Diamidino-2-phenylindole (DAPI) staining, flow cytometric analysis, knockdown of ASK1, and reactive oxygen species (ROS) production were evaluated to clarify the mechanism of action. Phytochemical screening confirmed the presence of wide range of phytoconstituents. Hyoscyamus muticus methanolic extracts (HMME) showed the highest anti-cancer activities against leukemia, breast, renal, and prostate cancers as compared to ethanol and aqueous extracts. Specifically, HMME exerted cytotoxic effect against the MDA-MB-231 and MDA-MB-468 triple-negative breast cancer (TNBC) cell lines with IC50 values of 8.75 and 7.25 μg/mL, respectively. Mechanistically, DAPI staining and flow cytometric analysis revealed that HMME induces apoptosis via the death receptor, FAS, but not the mitochondrial pathway. Moreover, ASK1 and p38 were rapidly activated in response to HMME, and knockdown of ASK1 by a small interference of RNA specific to Ask1 attenuated p38 and caspase-3 activation and suppressed apoptosis, implying that HMME-induced apoptosis relies on the ASK1-p38-caspase-3 pathway. Furthermore, we confirmed that cellular ROS generation was a critical mediator in HMME-induced apoptosis because the ROSscavenger N-acetyl cysteine significantly decreased the phosphorylation of ASK1 and HMME-induced apoptosis. Our results confirmed HMME cytotoxic effects in TNBCs via ROS-dependent activation of the Fas/FasL-ASK1-p38 axis.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼