RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Revolutionizing Brain Tumor Segmentation in MRI with Dynamic Fusion of Handcrafted Features and Global Pathway-based Deep Learning

        Faizan Ullah,Muhammad Nadeem,Mohammad Abrar 한국인터넷정보학회 2024 KSII Transactions on Internet and Information Syst Vol.18 No.1

        Gliomas are the most common malignant brain tumor and cause the most deaths. Manual brain tumor segmentation is expensive, time-consuming, error-prone, and dependent on the radiologist's expertise and experience. Manual brain tumor segmentation outcomes by different radiologists for the same patient may differ. Thus, more robust, and dependable methods are needed. Medical imaging researchers produced numerous semi-automatic and fully automatic brain tumor segmentation algorithms using ML pipelines and accurate (handcrafted feature-based, etc.) or data-driven strategies. Current methods use CNN or handmade features such symmetry analysis, alignment-based features analysis, or textural qualities. CNN approaches provide unsupervised features, while manual features model domain knowledge. Cascaded algorithms may outperform feature-based or data-driven like CNN methods. A revolutionary cascaded strategy is presented that intelligently supplies CNN with past information from handmade feature-based ML algorithms. Each patient receives manual ground truth and four MRI modalities (T1, T1c, T2, and FLAIR). Handcrafted characteristics and deep learning are used to segment brain tumors in a Global Convolutional Neural Network (GCNN). The proposed GCNN architecture with two parallel CNNs, CSPathways CNN (CSPCNN) and MRI Pathways CNN (MRIPCNN), segmented BraTS brain tumors with high accuracy. The proposed model achieved a Dice score of 87% higher than the state of the art. This research could improve brain tumor segmentation, helping clinicians diagnose and treat patients.

      • Hollow fiber membrane model for gas separation: Process simulation, experimental validation and module characteristics study

        Ahmad, Faizan,Lau, K.K.,Lock, S.S.M.,Rafiq, Sikander,Khan, Asad Ullah,Lee, Moonyong Elsevier 2015 Journal of industrial and engineering chemistry Vol.21 No.-

        <P><B>Abstract</B></P> <P>Conceptual process simulations and optimization are essential in the design, operation and troubleshooting stages of a membrane-based gas separation system. Despite this, there are few mathematical models/tools associated with a hollow fiber membrane module available in a commercial process simulator. A mathematical model dealing with the hollow fiber module characteristics that can be included within a commercial process simulator is needed to examine the performance and economics of a gas separation system. In this study, a hollow fiber membrane model was incorporated in Aspen HYSYS as a user defined unit operation for the study of carbon dioxide separation from methane. The hollow fiber membrane model was validated experimentally. The study of a double stage membrane module with a permeate recycle, which was proposed to be the optimal configuration in previous studies, was extended to consider the effects of the module characteristics (such as the fiber length, radius of the fiber bundle, diameter of the fibers, and porosity) on the process performance and economics. The gas processing cost (GPC) increased with increasing fiber length and bundle radius, and decreased with increasing outer diameter of the fibers and porosity. At the same time, the separation efficiency (product quality) was also dependent on these module parameters. Therefore, the tradeoff for the hollow fiber membrane module characteristics needs to be determined based on the minimum GPC with respect to the desired product purity.</P>

      • KCI등재

        Antimicrobial Evaluation and Characterization of Copper Nanoparticles Synthesized by the Simple Chemical Method

        Arshad Hussain Wazir,Qudratullah Khan,Nisar Ahmad,Faizan Ullah,Imdadullah Quereshi,Hazrat Ali 한국재료학회 2022 한국재료학회지 Vol.32 No.2

        Copper nanoparticles (CuNPs) are considered of great importance due to their high catalytic and antimicrobial activities. This study focuses on the preparation and characterization of CuNPs, and on their antibacterial/antifungal activities. A copper salt (copper sulfate pentahydrate) as precursor, starch as stabilizing agent, and ascorbic acid as reducing agent were used to fabricate CuNPs. The resulting product was characterized via different techniques such as X-ray diffractrometry (XRD), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning electron microscopy (SEM) to confirm its characteristic properties. Employing the Scherrer formula, the mean crystallite sizes of copper (Cu) and cuprous oxide (Cu2O) nanocrystals were found to be 29.21 and 25.33 nm, respectively, as measured from the main X-ray diffraction peaks. The functional groups present in the resulting CuNPs were confirmed by FTIR. In addition, the engineered CuNPs showed antibacterial and antifungal activity against tested pathogenic bacterial and fungal strains.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼