RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI우수등재

        Degradation of Polyethylene Plastic by Non-Embedded Visible-Light Iron-Doped Zinc Oxide Nanophotocatalyst

        Maryam Zia,Sulaiman Faisal,Dilawar Farhan Shams,Farida Anjum,Mehk Saeed,ZiaUllah Shah,Akhtar Nadhman 한국진공학회(ASCT) 2021 Applied Science and Convergence Technology Vol.30 No.3

        This study investigated the photocatalytic degradation of pure low-density polyethylene (LDPE) and commercial-grade polyethylene (PE) films with iron-doped zinc oxide (Fe-ZnO) nanoparticles under visible light. The study was particularly focused on the role of reactive oxygen species (ROS) and the types of plastic degradation. The Fe-ZnO were synthesized using the co-precipitation method and characterized by TEM and XRD. Degradation of 6.35 cm² films of LDPE and commercial grade PE was tested under artificial LED light (84 lm/W) and dark in Fe-ZnO suspensions of 10 ml having concentrations ranging from 10 to 1000 g/ml. The results showed a maximum weight reduction of 13.8 % for pure LDPE films at 200 g/ml and 15 % for commercial grade PE at 1000 g/ml in 14 days. In comparison, no weight reduction was observed in the dark, which confirmed that the degradation was induced by the production of ROS moieties in visible light i.e., singlet oxygen (30.11 %), hydroxyl ions (30.45 %), and hydroxyl radicals (39.34 %). The degradation was further confirmed by FTIR with the formation of alcohols and alkenes and SEM analysis that showed visible cracks in both LDPE and PE. The study unveiled Fe-ZnO nanoparticles as an efficient substitute to degrade polyethylene under visible light.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼