RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUS

        Laser micro-drilling of CNT reinforced polymer nanocomposite: A parametric study using RSM and APSO

        Lipsamayee Mishra,Trupti Ranjan Mahapatra,Debadutta Mishra,Akshaya Kumar Rout Techno-Press 2024 Advances in materials research Vol.13 No.1

        The present experimental investigation focuses on finding optimal parametric data-set of laser micro-drilling operation with minimum taper and Heat-affected zone during laser micro-drilling of Carbon Nanotube/Epoxy-based composite materials. Experiments have been conducted as per Box-Behnken design (BBD) techniques considering cutting speed, lamp current, pulse frequency and air pressure as input process parameters. Then, the relationship between control parameters and output responses is developed using second-order nonlinear regression models. The analysis of variance test has also been performed to check the adequacy of the developed mathematical model. Using the Response Surface Methodology (RSM) and an Accelerated particle swarm optimization (APSO) technique, optimum process parameters are evaluated and compared. Moreover, confirmation tests are conducted with the optimal parameter settings obtained from RSM and APSO and improvement in performance parameter is noticed in each case. The optimal process parameter setting obtained from predictive RSM based APSO techniques are speed=150 (m/s), current=22 (amp), pulse frequency (3 kHz), Air pressure (1 kg/cm<sup>2</sup>) for Taper and speed=150 (m/s), current=22 (amp), pulse frequency (3 kHz), air pressure (3 kg/cm<sup>2</sup>) for HAZ. From the confirmatory experimental result, it is observed that the APSO metaheuristic algorithm performs efficiently for optimizing the responses during laser micro-drilling process of nanocomposites both in individual and multi-objective optimization.

      • Hygrothermal sound radiation analysis of layered composite plate using HFEM-IBEM micromechanical model and experimental validation

        Binita Dash,Trupti R Mahapatra,Punyapriya Mishra,Debadutta Mishra 국제구조공학회 2024 Structural Engineering and Mechanics, An Int'l Jou Vol.89 No.3

        The sound radiation responses of multi-layer composite plates subjected to harmonic mechanical excitation in hygrothermal environment is numerically investigated. A homogenized micromechanical finite element (FE) based on the higher-order mid-plane kinematics replicating quadratic function as well as the through the thickness stretching effect together with the indirect boundary element (IBE) scheme has been first time employed. The isoparametric Lagrangian element (ten degrees of freedom per node) is used for discretization to attain the hygro-thermo-elastic natural frequencies and the modes of the plate via Hamilton’s principle. The effective material properties under combined hygrothermal loading are considered via a micromechanical model. An IBE method is then implemented to attain structure-surrounding coupling and the Helmholtz wave equation is solved to compute the sound radiation responses. The effectiveness of the model is tested by converging it with the similar analytical/numerical results as well as the experimentally acquired data. The present scheme is further hold out for solving diverse numerical illustrations. The results revealed the relevance of the current higher-order FE-IBE micromechanical model in realistic estimation of hygro-thermo-acoustic responses. The geometrical parameters, volume fraction of fiber, layup, and support conditions alongside the hygrothermal load is found to have significant influence on the vibroacoustic characteristics.

      • Design optimization of structural component (hitch bracket of tractor): A reverse engineering approach

        Dilip K. Sahu,Priyam P. Tripathy,Trupti R. Mahapatra,Punyapriya Mishra,Debadutta Mishra 국제구조공학회 2024 Structural Engineering and Mechanics, An Int'l Jou Vol.89 No.5

        Manufacturing industries, now-a-days, focus mostly on redesigning of the products for reducing cost and lead-time via detailed analysis of its composition and constructional design regarded as the Reverse Engineering (RE) process that involves the acquisition of relevant data of the original product, analysis for its functional use and finally, reproduction of the design for improving the functionality. In the present work, a new model based on optimization at different steps of RE, is proposed to redesign a structural component, which is subjected to severe tensile stress while in service. The component under study is an accessory namely, hitch bracket, attached to the rear axle of a tractor to connect it to the plough. The methodology includes building of a 3D Computer Aided Design (CAD) model from the scanned data of the existing component with the help of 3D scanner. Computer Aided Engineering (CAE) analysis is carried out on the CAD model with existing load conditions by Finite Element Analysis (FEA). Topological optimization is carried out giving rise to a modified/optimized design of the component. It is observed that the performance of the modified component improves significantly with simultaneous weight reduction without affecting its functional use and the manufacturing process setup.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼