RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Data-mining modeling for the prediction of wear on forming-taps in the threading of steel components

        Bustillo, Andres,Lopez de Lacalle, Luis N.,Fernandez-Valdivielso, Asier,Santos, Pedro Society for Computational Design and Engineering 2016 Journal of computational design and engineering Vol.3 No.4

        An experimental approach is presented for the measurement of wear that is common in the threading of cold-forged steel. In this work, the first objective is to measure wear on various types of roll taps manufactured to tapping holes in microalloyed HR45 steel. Different geometries and levels of wear are tested and measured. Taking their geometry as the critical factor, the types of forming tap with the least wear and the best performance are identified. Abrasive wear was observed on the forming lobes. A higher number of lobes in the chamber zone and around the nominal diameter meant a more uniform load distribution and a more gradual forming process. A second objective is to identify the most accurate data-mining technique for the prediction of form-tap wear. Different data-mining techniques are tested to select the most accurate one: from standard versions such as Multilayer Perceptrons, Support Vector Machines and Regression Trees to the most recent ones such as Rotation Forest ensembles and Iterated Bagging ensembles. The best results were obtained with ensembles of Rotation Forest with unpruned Regression Trees as base regressors that reduced the RMS error of the best-tested baseline technique for the lower length output by 33%, and Additive Regression with unpruned M5P as base regressors that reduced the RMS errors of the linear fit for the upper and total lengths by 25% and 39%, respectively. However, the lower length was statistically more difficult to model in Additive Regression than in Rotation Forest. Rotation Forest with unpruned Regression Trees as base regressors therefore appeared to be the most suitable regressor for the modeling of this industrial problem.

      • Modality-Dependent Impact of Hallucinations on Low-Frequency Fluctuations in Schizophrenia

        Hare, S. M.,Ford, J. M.,Ahmadi, A.,Damaraju, E.,Belger, A.,Bustillo, J.,Lee, H. J.,Mathalon, D. H.,Mueller, B. A.,Preda, A. Oxford University Press 2017 Schizophrenia bulletin Vol.43 No.2

        <P>Prior resting-state functional magnetic resonance imaging (fMRI) analyses have identified patterns of functional connectivity associated with hallucinations in schizophrenia (Sz). In this study, we performed an analysis of the mean amplitude of low-frequency fluctuations (ALFF) to compare resting state spontaneous low-frequency fluctuations in patients with Sz who report experiencing hallucinations impacting different sensory modalities. By exploring dynamics across 2 low-frequency passbands (slow-4 and slow-5), we assessed the impact of hallucination modality and frequency range on spatial ALFF variation. Drawing from a sample of Sz and healthy controls studied as part of the Functional Imaging Biomedical Informatics Research Network (FBIRN), we replicated prior findings showing that patients with Sz have decreased ALFF in the posterior brain in comparison to controls. Remarkably, we found that patients that endorsed visual hallucinations did not show this pattern of reduced ALFF in the back of the brain. These patients also had elevated ALFF in the left hippocampus in comparison to patients that endorsed auditory (but not visual) hallucinations. Moreover, left hippocampal ALFF across all the cases was related to reported hallucination severity in both the auditory and visual domains, and not overall positive symptoms. This supports the hypothesis that dynamic changes in the ALFF in the hippocampus underlie severity of hallucinations that impact different sensory modalities.</P>

      • SCISSCISCIESCOPUS

        Disrupted network cross talk, hippocampal dysfunction and hallucinations in schizophrenia

        Hare, Stephanie M.,Law, Alicia S.,Ford, Judith M.,Mathalon, Daniel H.,Ahmadi, Aral,Damaraju, Eswar,Bustillo, Juan,Belger, Aysenil,Lee, Hyo Jong,Mueller, Bryon A.,Lim, Kelvin O.,Brown, Gregory G.,Preda Elsevier 2018 Schizophrenia Research Vol.199 No.-

        <P><B>Abstract</B></P> <P>Hallucinations characterize schizophrenia, with approximately 59% of patients reporting auditory hallucinations and 27% reporting visual hallucinations. Prior neuroimaging studies suggest that hallucinations are linked to disrupted communication across distributed (sensory, salience-monitoring and subcortical) networks. Yet, our understanding of the neurophysiological mechanisms that underlie auditory and visual hallucinations in schizophrenia remains limited.</P> <P>This study integrates two resting-state functional magnetic resonance imaging (fMRI) analysis methods – amplitudes of low-frequency fluctuations (ALFF) and functional network connectivity (FNC) – to explore the hypotheses that (1) abnormal FNC between salience and sensory (visual/auditory) networks underlies hallucinations in schizophrenia, and (2) disrupted hippocampal oscillations (as measured by hippocampal ALFF) beget changes in FNC linked to hallucinations. Our first hypothesis was supported by the finding that schizophrenia patients reporting hallucinations have higher FNC between the salience network and an associative auditory network relative to healthy controls. Hippocampal ALFF was negatively associated with FNC between primary auditory cortex and the salience network in healthy subjects, but was positively associated with FNC between these networks in patients reporting hallucinations. These findings provide <I>indirect</I> support favoring our second hypothesis. We suggest future studies integrate fMRI with electroencephalogram (EEG) and/or magnetoencephalogram (MEG) methods to <I>directly probe</I> the temporal relation between altered hippocampal <I>oscillations</I> and changes in cross-network functional communication.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼