RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Joint estimation of state of charge and state of health of lithium‑ion battery based on fractional order model

        Yuanzhong Xu,Bohan Hu,Tiezhou Wu,Tingyi Xiao 전력전자학회 2022 JOURNAL OF POWER ELECTRONICS Vol.22 No.2

        This paper proposes a joint estimation scheme for the state of charge (SoC) and state of health (SoH) for lithium-ion batteries in electric vehicles. The estimation accuracy is improved from four aspects. First, to overcome the shortcomings of the electrochemical model and equivalent circuit model, the battery model is established by a fractional order (FO) model. Second, a genetic algorithm is used to identify the model parameters, realizing optimal parameter identification. Third, the FO adaptive extended Kalman filter-based SoC estimator is developed, and the innovation accuracy of the algorithm is improved by multi- innovation theory. Fourth, the joint estimation of SoC and SoH is formulated through a multi-timescale framework. The proposed model and method are verified through dynamic operating condition experiments, and the main results are as follows. (1) In the entire SoC range, the accuracy of the FO model is better than that of the integer order (IO) model. (2) The effectiveness of the optimized SoC estimation method is verified, and the estimation error can be controlled within 3%. (3) The effectiveness of the proposed joint estimation method in dynamic conditions is verified, and it shows high accuracy.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼