RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        최적화된 신경망 기반 무선 센서 노드위치 알고리즘 제안

        관보(Bo Guan),쥐훙샹(Hongxiang Qu),양펑지옌(Fengjian Yang),리홍량(Hongliang Li),정양권(Yang-Kwon Jeong) 한국전자통신학회 2022 한국전자통신학회 논문지 Vol.17 No.6

        본 연구는 RSSI의 거리측정 방법이 외부 환경에 의해 쉽게 영향을 받아 위치 오차가 크다는 결점을 도출하였고 이 3차원 배치 환경에서 RSSI의 거리측정 노드에서 측정한 거리값을 최적화하는 문제에 대해 향상된 CA-PSO 알고리즘을 개선한 CA-PSO-BP 알고리즘을 제안하였다. 제안된 알고리즘은 3차원 무선센서네트워크(WSN) 공간에서 인식할 수 없는 노드를 설정할 수 있도록 하였다. 또한, CA-PSO를 BP 신경망에 응용하므로, 학습을 통해 BP 네트워크의 학습시간 단축과 알고리즘의 수렴 속도를 제고 할 수 있었다. 본 연구에서 제안한 알고리즘을 통해 네트워크의 위치의 정밀도를 현저(15%)하게 높일 수 있다는 것을 증명하였고 유의미한 결과를 얻을 수 있었다. This study leads to the shortcoming that the RSSI distance measurement method is easily affected by the external environment and the position error is large, leading to the problem of optimizing the distance values measured by the RSSI distance measurement nodes in this three-dimensional configuration environment. We proposed the CA-PSO-BP algorithm, which is an improved version of the CA-PSO algorithm. The proposed algorithm allows setting unknown nodes in WSN 3D space. In addition, since CA-PSO was applied to the BP neural network, it was possible to shorten the learning time of the BP network and improve the convergence speed of the algorithm through learning.Through the algorithm proposed in this study, it was proved that the precision of the network location can be increased significantly (15%), and significant results were obtained.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼