RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Production of a Recombinant Anti-Human CD4 Single-Chain Variable- Fragment Antibody Using Phage Display Technology and Its Expression in Escherichia coli

        ( Babaei Arash ),( Sayyed Hamid Zarkesh Esfahani ),( Marjan Gharagozloo ) 한국미생물 · 생명공학회 2011 Journal of microbiology and biotechnology Vol.21 No.5

        Single-chain variable fragment (scFv) is a fusion protein of the variable regions of the heavy (VH) and light (VL) chains of immunoglobulin, connected with a short linker peptide of 10 to about 20 amino acids. In this study, the scFv of a monoclonal antibody against the third domain of human CD4 was cloned from OKT4 hybridoma cells using the phage display technique and produced in E. coli. The expression, production, and purification of anti-CD4 scFv were tested using SDS-PAGE and Western blot, and the specificity of anti-CD4 scFv was examined using ELISA. A 31kDa recombinant anti-CD4 scFv was expressed and produced in bacteria, which was confirmed by SDS-PAGE and Western blot assays. Sequence analysis proved the ScFv structure of the construct. It was able to bind to CD4 in quality ELISA assay. The canonical structure of anti-CD4 scFv antibody was obtained using the SWISS_MODEL bioinformatics tool for comparing with the scFv general structure. To the best of our knowledge, this is the first report for generating scFv against human CD4 antigen. Engineered anti-CD4 scFv could be used in immunological studies, including fluorochrome conjugation, bispecific antibody production, bifunctional protein synthesis, and other genetic engineering manipulations. Since the binding site of our product is domain 3 (D3) of the CD4 molecule and different from the CD4 immunological main domain, including D1 and D2, further studies are needed to evaluate the anti-CD4 scFv potential for diagnostic and therapeutic applications.

      • KCI등재

        Antibodies to Interferon beta in Patients with Multiple Sclerosis Receiving CinnoVex, Rebif, and Betaferon

        Nasrin Zare,Sayyed Hamid Zarkesh-Esfahani,Marjan Gharagozloo,Vahid Shaygannejad 대한의학회 2013 Journal of Korean medical science Vol.28 No.12

        Treatment with interferon beta (IFN-β) induces the production of binding antibodies (BAbs) and neutralizing antibodies (NAbs) in patients with multiple sclerosis (MS). NAbs against IFN-β are associated with a loss of IFN-β bioactivity and decreased clinical efficacy of the drug. The objective of this study was to evaluate the incidence and the prevalence of binding antibodies (BAbs) and neutralizing antibodies (NAbs) to IFN-β in MS patients receiving CinnoVex, Rebif, or Betaferon. The presence of BAbs was studied in serum samples from 124 MS patients using one of these IFN-β medications by ELISA. The NAbs against IFN-β were measured in BAb-positive MS patients receiving IFN-β using an MxA gene expression assay (real-time RT-PCR). Of the 124 patients, 36 (29.03%) had BAbs after at least 12 months of IFN-β treatment. The proportion of BAb+ was 38.1% for Betaferon, 21.9% for Rebif, and 26.8% for CinnoVex. Five BAb-positive MS patients were lost to follow-up; thus 31 BAb-positive MS patients were studied for NAbs. NAbs were present in 25 (80.6%) of BAb-positive MS patients receiving IFN-β. In conclusion, the three IFN-β preparations have different degrees of immunogenicity.

      • KCI등재

        Neutralization of Human Papillomavirus by Specific Nanobodies Against Major Capsid Protein L1

        ( Minaeian Sara ),( Fatemeh Rahbarizadeh ),( Sayyed Hamid Zarkesh Esfahani ),( Davoud Ahmadvand ),( Oliver Jay Broom ) 한국미생물 · 생명공학회 2012 Journal of microbiology and biotechnology Vol.22 No.5

        The human papillomavirus (HPV) is the main cause of cervical cancer in developing countries. Rapid diagnosis and initiation of treatment of the HPV infection are critical. Various methods have been employed to reduce the immunogenicity of antibodies targeting HPV serotypes. Nanobodies are the smallest fragments of naturally occurring single-domain antibodies with their antigenbinding site compromised into a single domain. Nanobodies have remarkable properties such as high stability, solubility, and high homology to the human VH3 domain. In this study, a phagemid library was employed to enrich for nanobodies against the L1 protein of the human papilloma virus. Binding reactivity of the selected clones was evaluated using phage enzyme-linked immunosorbent assay (phage-ELISA). Finally, two nanobodies (sm5 and sm8) with the best reactivity against the Gardasil vaccine and the purified HPV-16 L1 protein were expressed and purified using a Ni+-NTA column. The accuracy of expression and purification of the nanobodies was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting assays. In vitro studies demonstrated that neutralization was achieved by the selected nanobodies. The ease of generation and unique features of these molecules make nanobodies promising molecules for the new generation of HPV diagnosis and therapy.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼