RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        The Interrelationship of Agronomic and Physiological Traits as Affected by Irrigation Regimes in Wheat: Application of Multivariate Statistical Analyses

        ( Samaneh Zamani-babgohari ),( Bahram Heidari ),( Ali Dadkhodaie ) 한국육종학회 2017 Plant Breeding and Biotechnology Vol.5 No.3

        Understanding the interrelationships between agronomic and water status characters helps development of drought tolerant cultivars. In the present study, 34 wheat genotypes were used to investigate joint variability of water status characters and yield related traits under normal irrigation regimes and drought stress in 2014-2015 growing season. The results indicated that selection of genotypes based on loadings in factors number 1, 3 and 4 would be of beneficial in terms of increasing grain yield related traits under drought stress conditions. In canonical correlation analysis (CCA), the first (U1, V1) and second (U2, V2) pairs canonical variables (CV) explained 75% and 67% of the total joint variability of agronomic and physiological traits under drought stress conditions, respectively. The first (V1) physiological CV that had positive correlation with water saturated deficit (WSD, r = 0.63) and excised leaf water loss (ELWL, r = 0.35) was more correlated with grain yield and harvest index under drought stress. The second (V2) physiological CV which was more influenced by variations in initial water content (IWC, r = 0.6) and leaf water content (LWC, r = 0.65) was associated with spike length and spikelet per spike variations. Significant between-groups mean squares advocated that classification of genotypes into four groups was the best possible branching under both conditions. Therefore, making crosses between genotypes of cluster numbers 1 (with high grain yield and its components) and 3 (having shortest height) can be used for the production of extreme or novel phenotypes for grain yield and dwarfness in the progenitors in further breeding programs for drought tolerance.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼