RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Neutralization of Human Papillomavirus by Specific Nanobodies Against Major Capsid Protein L1

        ( Minaeian Sara ),( Fatemeh Rahbarizadeh ),( Sayyed Hamid Zarkesh Esfahani ),( Davoud Ahmadvand ),( Oliver Jay Broom ) 한국미생물 · 생명공학회 2012 Journal of microbiology and biotechnology Vol.22 No.5

        The human papillomavirus (HPV) is the main cause of cervical cancer in developing countries. Rapid diagnosis and initiation of treatment of the HPV infection are critical. Various methods have been employed to reduce the immunogenicity of antibodies targeting HPV serotypes. Nanobodies are the smallest fragments of naturally occurring single-domain antibodies with their antigenbinding site compromised into a single domain. Nanobodies have remarkable properties such as high stability, solubility, and high homology to the human VH3 domain. In this study, a phagemid library was employed to enrich for nanobodies against the L1 protein of the human papilloma virus. Binding reactivity of the selected clones was evaluated using phage enzyme-linked immunosorbent assay (phage-ELISA). Finally, two nanobodies (sm5 and sm8) with the best reactivity against the Gardasil vaccine and the purified HPV-16 L1 protein were expressed and purified using a Ni+-NTA column. The accuracy of expression and purification of the nanobodies was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting assays. In vitro studies demonstrated that neutralization was achieved by the selected nanobodies. The ease of generation and unique features of these molecules make nanobodies promising molecules for the new generation of HPV diagnosis and therapy.

      • KCI등재

        Development of Gold-Coated Magnetic Nanoparticles as a Potential MRI Contrast Agent

        Ali Reza Montazerabadi,Mohammad Ali Oghabian,Rasoul Irajirad,Samad Muhammadnejad,Davoud Ahmadvand,Hamid Delavari H,Seyed Rabie Mahdavi 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2015 NANO Vol.10 No.4

        Gold-coated superparamagnetic iron oxide nanoparticles (SPIONs) coated with methylpolyethylene glycol (mPEG) are synthesized and investigated as a magnetic resonance (MR) imaging contrast agent. The synthesized mPEG-core@shells are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), vibrating sample magnetometry (VSM), zeta-potential analysis and X-ray diffraction (XRD). In addition, the transverse relaxivity of the mPEG-core@shells is measured using a 3 T MRI scanner. The cytotoxicity of the mPEG-core@shells is tested in the LNCaP cell line using an 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results show that the mPEG-core@shell particles are semispherical with hydrodynamic size of ~65 nm and a transverse relaxivity of 162.3 mM-1 S-1. The mPEG-core@shell particles demonstrate good stability in biological media without any significant in vitro cytotoxicity under high cellular uptake conditions. Finally, in vivo imaging shows that mPEG-core@shells are a potential contrast agent for use in early-stage detection.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼