RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • Advancing the Cyberinfrastructure for Smart Water Metering and Water Demand Modeling

        Attallah, Nour A ProQuest Dissertations & Theses Utah State Univers 2022 해외박사(DDOD)

        RANK : 247343

        With rapid growth of urban populations and limited water resources, achieving an appropriate balance between water supply capacity and residential water demand poses a significant challenge to water supplying agencies. With the recent emergence of smart metering technology, where water use can be monitored and recorded at high resolution (e.g., observations of water use every 5 seconds), most existing research has been aimed at providing water managers with detailed information about the water use behavior of their consumers and the performance of water using fixtures. However, replacing existing meters with smart meters is expensive, and effectively using data produced by smart meters can be a roadblock for water utilities that lack sophisticated information technology expertise. The research in this dissertation presents low cost, open source cyberinfrastructure aimed at addressing these challenges. Components developed include an open source algorithm for identifying and classifying water end use events from smart meter data, a low cost datalogging and computational device that enables existing water meters to collect high resolution data and compute end use information, and a detailed water demand model that uses end use event information to simulate residential water use at a municipality level. Using this cyberinfrastructure, we conducted a case study application in the cities of Logan and Providence, Utah. We tested the applicability of the disaggregation algorithm in quantifying water end uses for different meter sizes and types. We tested the datalogging computational device at a residential household and demonstrated collection, disaggregation, and transfer of high resolution flow data and classified events into a secure server. Finally, we demonstrated a water demand model that simulates the detailed water end uses of Logan’s residents using a combination of a set of representative water end use events and monthly billing data. Using the data we collected and the outputs from the model, we demonstrated opportunities for conserving water through improving the efficiency of water using fixtures and promoting behavior changes.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼